matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenPartielle Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Partielle Differentialgleichungen" - Partielle Ableitung
Partielle Ableitung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 So 01.07.2012
Autor: dudu93

Hallo, ich habe Schwierigkeiten bei folgender partiellen Ableitung nach der Variabeln [mm] x_2: [/mm]

[mm] f_{x_2}(x_1x_2x_3) [/mm] = [mm] 2x_1x_3^2sin(x_1^2x_2^2)+2x_1^3x_2^2x_3^2cos(x_1^2x_2^2) [/mm]

Und zwar würde ich hier Produkt- sowie Kettenregel anwenden.

Produktregel ist ja bekannt als: u'*v + u*v'

Nur bin ich mir nicht sicher, welche Faktoren u und v bzw. u' und v' darstellen sollen. Beim eindimensionalen gab es damit keine Probleme. Doch hier komme ich durcheinander.

Wenn ich z.B. den ersten Teil betrachte:

[mm] 2x_1x_3^2sin(x_1^2x_2^2) [/mm] + [...]

Woher weiß man, was davon nun genau u und v ist? Genau so beim zweiten Teil der Funktion.

Über Hilfe wäre ich sehr dankbar, LG.

        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 So 01.07.2012
Autor: MathePower

Hallo dudu93,

> Hallo, ich habe Schwierigkeiten bei folgender partiellen
> Ableitung nach der Variabeln [mm]x_2:[/mm]
>  
> [mm]f_{x_2}(x_1x_2x_3)[/mm] =
> [mm]2x_1x_3^2sin(x_1^2x_2^2)+2x_1^3x_2^2x_3^2cos(x_1^2x_2^2)[/mm]
>  
> Und zwar würde ich hier Produkt- sowie Kettenregel
> anwenden.
>
> Produktregel ist ja bekannt als: u'*v + u*v'
>  
> Nur bin ich mir nicht sicher, welche Faktoren u und v bzw.
> u' und v' darstellen sollen. Beim eindimensionalen gab es
> damit keine Probleme. Doch hier komme ich durcheinander.
>  
> Wenn ich z.B. den ersten Teil betrachte:
>  
> [mm]2x_1x_3^2sin(x_1^2x_2^2)[/mm] + [...]
>  
> Woher weiß man, was davon nun genau u und v ist? Genau so
> beim zweiten Teil der Funktion.
>

u und v kannst Du wählen, das Produkt muss eben diesen Summanden ergeben.


Eine geeignete Wahl ist hier z.B.

[mm]u\left(x_{1},x_{2},x_{3}\right)=2x_{1}x_{3}^{2}[/mm]

[mm]v\left(x_{1},x_{2},x_{3}\right)=\sin\left(x_{1}^{2}x_{2}^{2}\right)[/mm]


> Über Hilfe wäre ich sehr dankbar, LG.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]