matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationPartielle Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - Partielle Ableitung
Partielle Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Sa 02.02.2013
Autor: AntonK

Aufgabe
[mm] f(x)=\begin{pmatrix} x \\ x^2 \\ x^3 \end{pmatrix} [/mm]

Hallo Leute,

Ich will zeigen, dass die Funktion in x=1 differenzierbar ist.

Es muss also gelten:

[mm] \limes_{x\rightarrow x_0} \bruch{||f(x)-f(x_0)-A*(x-x_0)||_2}{||x-x_0||_2}=0 [/mm]

Die Matrix ist A, ist die Ableitung in x=1.

[mm] f'(x)=\begin{pmatrix} 1 \\ 2x \\ 3x^2 \end{pmatrix} [/mm]

[mm] \limes_{x\rightarrow 1} \bruch{||\begin{pmatrix} x \\ x^2 \\ x^3 \end{pmatrix}-\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}-\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}*\begin{pmatrix} x-1 \\ x-1 \\ x-1 \end{pmatrix}||_2}{||\begin{pmatrix} x-1 \\ x-1 \\ x-1 \end{pmatrix}||_2} [/mm]

Das kann doch irgendwie nicht sein oder, ich kann doch [mm] \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}*\begin{pmatrix} x-1 \\ x-1 \\ x-1 \end{pmatrix} [/mm] gar nicht multiplizieren, weil es doch eigentlich transponiert sein müsste oder?

Danke schonmal!


        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Sa 02.02.2013
Autor: Richie1401

Hallo AntonK,

> [mm]f(x)=\begin{pmatrix} x \\ x^2 \\ x^3 \end{pmatrix}[/mm]
>  Hallo
> Leute,
>  
> Ich will zeigen, dass die Funktion in x=1 differenzierbar
> ist.
>  
> Es muss also gelten:
>  
> [mm]\limes_{x\rightarrow x_0} \bruch{||f(x)-f(x_0)-A*(x-x_0)||_2}{||x-x_0||_2}=0[/mm]
>  
> Die Matrix ist A, ist die Ableitung in x=1.
>  
> [mm]f'(x)=\begin{pmatrix} 1 \\ 2x \\ 3x^2 \end{pmatrix}[/mm]
>  
> [mm]\limes_{x\rightarrow 1} \bruch{||\begin{pmatrix} x \\ x^2 \\ x^3 \end{pmatrix}-\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}-\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}*\begin{pmatrix} x-1 \\ x-1 \\ x-1 \end{pmatrix}||_2}{||\begin{pmatrix} x-1 \\ x-1 \\ x-1 \end{pmatrix}||_2}[/mm]
>  
> Das kann doch irgendwie nicht sein oder, ich kann doch
> [mm]\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}*\begin{pmatrix} x-1 \\ x-1 \\ x-1 \end{pmatrix}[/mm]
> gar nicht multiplizieren, weil es doch eigentlich
> transponiert sein müsste oder?

Du musst berechnen A*(x-1), denn du es ist [mm] f:\IR^1\maptsto\IR^3. [/mm] Dein Punkt ist also gar nicht "vektorwertig", sondern eine normale reelle Zahl.

zu berechnen: [mm] \lim\limits_{x\to 1}\frac{\left|\left|\vektor{x\\x^2\\x^3}-\vektor{1\\1\\1}-\vektor{1\\2\\3}*(x-1)\right|\right|}{||(x-1)||} [/mm]

>  
> Danke schonmal!
>  


Bezug
                
Bezug
Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 Sa 02.02.2013
Autor: AntonK

[mm] \lim\limits_{x\to 1}\frac{\left|\left|\vektor{x\\x^2\\x^3}-\vektor{1\\1\\1}-\vektor{1\\2\\3}\cdot{}(x-1)\right|\right|}{||(x-1)||}= \lim\limits_{x\to 1}\frac{\left|\left|\vektor{x\\x^2\\x^3}-\vektor{1\\1\\1}-\vektor{x-1\\2x-2\\3x-3}\right|\right|}{||(x-1)||}=\lim\limits_{x\to 1}\frac{\sqrt{(x^2-2x+1)^2+(x^3-3x+2)^2}}{x-1}=\lim\limits_{x\to 1}\frac{\sqrt{((x-1)(x-1))^2+((x-1)(x^2+x-2))^2}}{x-1} [/mm]

Naja, belassen wir das mal, ist mir jetzt zuviel Arbeit, man sieht worauf es hinausläuft. Also nochmal zum mitschreiben, wenn ich 2 oder mehr Variablen habe, dann ist der Nenner beispielsweise wirklich ein Vektor, richtig?

Bezug
                        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Sa 02.02.2013
Autor: Richie1401

Hallo,

ja, wenn du mehr als zwei Variablen hast, dann hast du im Nenner in der Tat einen Vektor. Und die lineare Abbildung A ist dann auch eine Matrix und nicht nur ein "Vektor". Siehe dazu auch Jaobi-Matrix.

Prüft man den Grenzwert übrigens mal mit Mathematica nach, so erhält man wirklich [mm] \lim\ldots=0. [/mm]

Bezug
                                
Bezug
Partielle Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:40 Sa 02.02.2013
Autor: AntonK

Super, dankesehr!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]