matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenPartielle Ableitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle Ableitungen
Partielle Ableitungen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:45 Mo 27.10.2008
Autor: Zweiti

Aufgabe
Die Funktion [mm] f:\IR\to\IR^{2} [/mm] sei durch f(x,y):= [mm] e^{x-y}+(x-y)^{4}\sin\bruch{1}{x-y} [/mm] wenn [mm] x\not=y; [/mm] 1 wenn x=y gegeben.
Zeige, dass die Ableitungen [mm] f_{x}(0,0) [/mm] und [mm] f_{xy}(0,0) [/mm] existieren und berechne ihre Werte.

Hallo,
den ersten Teil der Aufgabe habe ich gelöst mit Hilfe des Differenzenquotienten und habe dann 1 für die Ableitung raus. Genauso wollte ich dass dann auch beim zweiten Machen aber komme nicht weiter.

Habe also erstmal [mm] f_{x} [/mm] berechnet, das ist: [mm] e^{x-y}+4(x-y)^{3}\*sin\bruch{1}{x-y}-(x-y)^{2}\*cos\bruch{1}{x-y}, [/mm] dann hab ich wieder den Differenzenquotienten gebildet, dh. [mm] \limes_{h\rightarrow 0}\bruch{f(0,h)-f(0,0)}{h}, [/mm] das ist bei mir: [mm] \limes_{h\rightarrow 0}\bruch{e^{-h}+4sin(\bruch{1}{h})h^{3}-cos(\bruch{1}{h})h^{2}-1}{h}, [/mm] davon hab ich versucht mit Hilfe von L'Hospital den Grenzwert zu bestimmen, hab es aber leider nicht hinbekommen.
Wäre für Hilfe dankbar

Zweiti

Hab dir Frage nur hier gestellt

        
Bezug
Partielle Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Mo 27.10.2008
Autor: fred97


> Die Funktion [mm]f:\IR\to\IR^{2}[/mm] sei durch f(x,y):=
> [mm]e^{x-y}+(x-y)^{4}\sin\bruch{1}{x-y}[/mm] wenn [mm]x\not=y;[/mm] 1 wenn
> x=y gegeben.
>  Zeige, dass die Ableitungen [mm]f_{x}(0,0)[/mm] und [mm]f_{xy}(0,0)[/mm]
> existieren und berechne ihre Werte.
>  Hallo,
>  den ersten Teil der Aufgabe habe ich gelöst mit Hilfe des
> Differenzenquotienten und habe dann 1 für die Ableitung
> raus. Genauso wollte ich dass dann auch beim zweiten Machen
> aber komme nicht weiter.
>  
> Habe also erstmal [mm]f_{x}[/mm] berechnet, das ist:
> [mm]e^{x-y}+4(x-y)^{3}\*sin\bruch{1}{x-y}-(x-y)^{2}\*cos\bruch{1}{x-y},[/mm]
> dann hab ich wieder den Differenzenquotienten gebildet, dh.
> [mm]\limes_{h\rightarrow 0}\bruch{f(0,h)-f(0,0)}{h},[/mm] das ist
> bei mir: [mm]\limes_{h\rightarrow 0}\bruch{e^{-h}+4sin(\bruch{1}{h})h^{3}-cos(\bruch{1}{h})h^{2}-1}{h},[/mm]
> davon hab ich versucht mit Hilfe von L'Hospital den
> Grenzwert zu bestimmen, hab es aber leider nicht
> hinbekommen.

Das hat man davon, wenn man die "Holzhammer-Methode" L'Hospital bemüht!


[mm] \bruch{e^{-h}+4sin(\bruch{1}{h})h^{3}-cos(\bruch{1}{h})h^{2}-1}{h} [/mm] =

[mm] \bruch{e^{-h}-1}{h} [/mm] + [mm] 4sin(1/h)h^2+cos(1/h)h [/mm]

der 1. Summand strebt gegen -1 und die beiden weiteren Summanden jeweils gegn 0

FRED








>  Wäre für Hilfe dankbar
>  
> Zweiti
>  
> Hab dir Frage nur hier gestellt


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]