matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenPartielle Diffbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle Diffbarkeit
Partielle Diffbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Diffbarkeit: Tipp
Status: (Frage) beantwortet Status 
Datum: 09:26 Di 05.08.2014
Autor: Calculu

Aufgabe
Sei B:={ [mm] x\in \IR^{n}: [/mm] ||x||<1 } und sei f: B [mm] \to \IR [/mm] eine differenzierbare Funktion. Zeigen Sie: Zu jedem [mm] x=(x_{1},....,x_{n}) [/mm] existiert ein [mm] t_{0} \in [/mm] (0,1) mit f(x)-f(0) = [mm] \summe_{i=1}^{n} x_{i}*\bruch{\partial f}{\partial x_{i}}*(t_{0}*x) [/mm]


Ich habe leider keine Idee, wie ich an die Sache rangehen soll.

        
Bezug
Partielle Diffbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:31 Di 05.08.2014
Autor: fred97


> Sei [mm]B:={x\in \IR^{n}: ||x||<1}[/mm] und sei f: B [mm]\to \IR[/mm] eine
> differenzierbare Funktion. Zeigen Sie: Zu jedem
> [mm]x=(x_{1},....,x_{n})[/mm]


Es soll wohl x [mm] \in [/mm] B sein.



>  existiert ein [mm]t_{0} \in[/mm] (0,1) mit
> f(x)-f(0) = [mm]\summe_{i=1}^{n} x_{i}*\bruch{\partial f}{\partial x_{i}}*(t_{0}*x)[/mm]
>  
> Ich habe leider keine Idee, wie ich an die Sache rangehen
> soll.

Sei x [mm] \in [/mm] B und g(t):=f(tx)  für t [mm] \in [/mm] [0,1].

Wende den eindimensionalen Mittelwertsatz auf die Differenz g(1)-g(0) an.

FRED


Bezug
                
Bezug
Partielle Diffbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:55 Di 05.08.2014
Autor: Calculu


> > Sei [mm]B:={x\in \IR^{n}: ||x||<1}[/mm] und sei f: B [mm]\to \IR[/mm] eine
> > differenzierbare Funktion. Zeigen Sie: Zu jedem
> > [mm]x=(x_{1},....,x_{n})[/mm]
>  
>
> Es soll wohl x [mm]\in[/mm] B sein.

Die Mengenklammer wurde nichz angezeigt, ich habe es korrigiert.

>  
>
>
> >  existiert ein [mm]t_{0} \in[/mm] (0,1) mit

> > f(x)-f(0) = [mm]\summe_{i=1}^{n} x_{i}*\bruch{\partial f}{\partial x_{i}}*(t_{0}*x)[/mm]
>  
> >  

> > Ich habe leider keine Idee, wie ich an die Sache rangehen
> > soll.
>
> Sei x [mm]\in[/mm] B und g(t):=f(tx)  für t [mm]\in[/mm] [0,1].
>  
> Wende den eindimensionalen Mittelwertsatz auf die Differenz
> g(1)-g(0) an.

[mm] g'(t_{0})= \bruch{g(1)-g(0)}{1-0} [/mm]

Ah ok, ich sehe es. Die Summe kommt daher, da [mm] x=(x_{1},....,x_{n}) [/mm]
Aber wie zeige ich jetzt, dass zu jedem x [mm] \in [/mm] B ein [mm] t_{0} \in [/mm] (0,1) existiert.

>  
> FRED
>  


Bezug
                        
Bezug
Partielle Diffbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:59 Di 05.08.2014
Autor: fred97


> > > Sei [mm]B:={x\in \IR^{n}: ||x||<1}[/mm] und sei f: B [mm]\to \IR[/mm] eine
> > > differenzierbare Funktion. Zeigen Sie: Zu jedem
> > > [mm]x=(x_{1},....,x_{n})[/mm]
>  >  
> >
> > Es soll wohl x [mm]\in[/mm] B sein.
>  
> Die Mengenklammer wurde nichz angezeigt, ich habe es
> korrigiert.
>  
> >  

> >
> >
> > >  existiert ein [mm]t_{0} \in[/mm] (0,1) mit

> > > f(x)-f(0) = [mm]\summe_{i=1}^{n} x_{i}*\bruch{\partial f}{\partial x_{i}}*(t_{0}*x)[/mm]
>  
> >  

> > >  

> > > Ich habe leider keine Idee, wie ich an die Sache rangehen
> > > soll.
> >
> > Sei x [mm]\in[/mm] B und g(t):=f(tx)  für t [mm]\in[/mm] [0,1].
>  >  
> > Wende den eindimensionalen Mittelwertsatz auf die Differenz
> > g(1)-g(0) an.
>   [mm]g'(t_{0})= \bruch{g(1)-g(0)}{1-0}[/mm]
>  
> Ah ok, ich sehe es. Die Summe kommt daher, da
> [mm]x=(x_{1},....,x_{n})[/mm]
>  Aber wie zeige ich jetzt, dass zu jedem x [mm]\in[/mm] B ein [mm]t_{0} \in[/mm]
> (0,1) existiert.

Was ist los ?????

Sei x [mm] \in [/mm] B und g(t):=f(tx)  für t [mm] \in [/mm] [0,1]

Es ex. ein [mm] t_0 \in [/mm] (0,1) mit  [mm]g'(t_{0})= \bruch{g(1)-g(0)}{1-0}=f(x)-f(0)[/mm]

Berchne doch mal [mm] g'(t_0) [/mm]    !!!!!

FRED

>  >  
> > FRED
>  >  
>  


Bezug
                                
Bezug
Partielle Diffbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:22 Di 05.08.2014
Autor: Calculu


> > > > Sei [mm]B:={x\in \IR^{n}: ||x||<1}[/mm] und sei f: B [mm]\to \IR[/mm] eine
> > > > differenzierbare Funktion. Zeigen Sie: Zu jedem
> > > > [mm]x=(x_{1},....,x_{n})[/mm]
>  >  >  
> > >
> > > Es soll wohl x [mm]\in[/mm] B sein.
>  >  
> > Die Mengenklammer wurde nichz angezeigt, ich habe es
> > korrigiert.
>  >  
> > >  

> > >
> > >
> > > >  existiert ein [mm]t_{0} \in[/mm] (0,1) mit

> > > > f(x)-f(0) = [mm]\summe_{i=1}^{n} x_{i}*\bruch{\partial f}{\partial x_{i}}*(t_{0}*x)[/mm]
>  
> >  

> > >  

> > > >  

> > > > Ich habe leider keine Idee, wie ich an die Sache rangehen
> > > > soll.
> > >
> > > Sei x [mm]\in[/mm] B und g(t):=f(tx)  für t [mm]\in[/mm] [0,1].
>  >  >  
> > > Wende den eindimensionalen Mittelwertsatz auf die Differenz
> > > g(1)-g(0) an.
>  >   [mm]g'(t_{0})= \bruch{g(1)-g(0)}{1-0}[/mm]
>  >  
> > Ah ok, ich sehe es. Die Summe kommt daher, da
> > [mm]x=(x_{1},....,x_{n})[/mm]
>  >  Aber wie zeige ich jetzt, dass zu jedem x [mm]\in[/mm] B ein
> [mm]t_{0} \in[/mm]
> > (0,1) existiert.
>  
> Was ist los ?????
>  
> Sei x [mm]\in[/mm] B und g(t):=f(tx)  für t [mm]\in[/mm] [0,1]
>  
> Es ex. ein [mm]t_0 \in[/mm] (0,1) mit  [mm]g'(t_{0})= \bruch{g(1)-g(0)}{1-0}=f(x)-f(0)[/mm]
>  
> Berchne doch mal [mm]g'(t_0)[/mm]    !!!!!

[mm] g'(t_{0}) [/mm] = [mm] f'(t_{0}*x)*x [/mm]

Das ist mir klar. Aber wie schreibe ich das im mehrdimensionalen auf. Sorry, aber ich kann es mir gerade echt nicht vorstellen wie ich das machen kann.

>  
> FRED
>  >  >  
> > > FRED
>  >  >  
> >  

>  


Bezug
                                        
Bezug
Partielle Diffbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 Di 05.08.2014
Autor: fred97


> > > > > Sei [mm]B:={x\in \IR^{n}: ||x||<1}[/mm] und sei f: B [mm]\to \IR[/mm] eine
> > > > > differenzierbare Funktion. Zeigen Sie: Zu jedem
> > > > > [mm]x=(x_{1},....,x_{n})[/mm]
>  >  >  >  
> > > >
> > > > Es soll wohl x [mm]\in[/mm] B sein.
>  >  >  
> > > Die Mengenklammer wurde nichz angezeigt, ich habe es
> > > korrigiert.
>  >  >  
> > > >  

> > > >
> > > >
> > > > >  existiert ein [mm]t_{0} \in[/mm] (0,1) mit

> > > > > f(x)-f(0) = [mm]\summe_{i=1}^{n} x_{i}*\bruch{\partial f}{\partial x_{i}}*(t_{0}*x)[/mm]
>  
> >  

> > >  

> > > >  

> > > > >  

> > > > > Ich habe leider keine Idee, wie ich an die Sache rangehen
> > > > > soll.
> > > >
> > > > Sei x [mm]\in[/mm] B und g(t):=f(tx)  für t [mm]\in[/mm] [0,1].
>  >  >  >  
> > > > Wende den eindimensionalen Mittelwertsatz auf die Differenz
> > > > g(1)-g(0) an.
>  >  >   [mm]g'(t_{0})= \bruch{g(1)-g(0)}{1-0}[/mm]
>  >  >  
> > > Ah ok, ich sehe es. Die Summe kommt daher, da
> > > [mm]x=(x_{1},....,x_{n})[/mm]
>  >  >  Aber wie zeige ich jetzt, dass zu jedem x [mm]\in[/mm] B ein
> > [mm]t_{0} \in[/mm]
> > > (0,1) existiert.
>  >  
> > Was ist los ?????
>  >  
> > Sei x [mm]\in[/mm] B und g(t):=f(tx)  für t [mm]\in[/mm] [0,1]
>  >  
> > Es ex. ein [mm]t_0 \in[/mm] (0,1) mit  [mm]g'(t_{0})= \bruch{g(1)-g(0)}{1-0}=f(x)-f(0)[/mm]
>  
> >  

> > Berchne doch mal [mm]g'(t_0)[/mm]    !!!!!
>  
> [mm]g'(t_{0})[/mm] = [mm]f'(t_{0}*x)*x[/mm]
>  
> Das ist mir klar. Aber wie schreibe ich das im
> mehrdimensionalen auf. Sorry, aber ich kann es mir gerade
> echt nicht vorstellen wie ich das machen kann.

Du hast doch schon alles !!!!

Es ist

$ [mm] \summe_{i=1}^{n} x_{i}\cdot{}\bruch{\partial f}{\partial x_{i}}\cdot{}(t_{0}\cdot{}x) =f'(t_{0}*x)*x=g'(t_0)=f(x)-f(0)$ [/mm]

Fertig !

FRED

>  
> >  

> > FRED
>  >  >  >  
> > > > FRED
>  >  >  >  
> > >  

> >  

>  


Bezug
                                                
Bezug
Partielle Diffbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:19 Di 05.08.2014
Autor: Calculu


> > > > > > Sei [mm]B:={x\in \IR^{n}: ||x||<1}[/mm] und sei f: B [mm]\to \IR[/mm] eine
> > > > > > differenzierbare Funktion. Zeigen Sie: Zu jedem
> > > > > > [mm]x=(x_{1},....,x_{n})[/mm]
>  >  >  >  >  
> > > > >
> > > > > Es soll wohl x [mm]\in[/mm] B sein.
>  >  >  >  
> > > > Die Mengenklammer wurde nichz angezeigt, ich habe es
> > > > korrigiert.
>  >  >  >  
> > > > >  

> > > > >
> > > > >
> > > > > >  existiert ein [mm]t_{0} \in[/mm] (0,1) mit

> > > > > > f(x)-f(0) = [mm]\summe_{i=1}^{n} x_{i}*\bruch{\partial f}{\partial x_{i}}*(t_{0}*x)[/mm]
>  
> >  

> > >  

> > > >  

> > > > >  

> > > > > >  

> > > > > > Ich habe leider keine Idee, wie ich an die Sache rangehen
> > > > > > soll.
> > > > >
> > > > > Sei x [mm]\in[/mm] B und g(t):=f(tx)  für t [mm]\in[/mm] [0,1].
>  >  >  >  >  
> > > > > Wende den eindimensionalen Mittelwertsatz auf die Differenz
> > > > > g(1)-g(0) an.
>  >  >  >   [mm]g'(t_{0})= \bruch{g(1)-g(0)}{1-0}[/mm]
>  >  >  >  
> > > > Ah ok, ich sehe es. Die Summe kommt daher, da
> > > > [mm]x=(x_{1},....,x_{n})[/mm]
>  >  >  >  Aber wie zeige ich jetzt, dass zu jedem x [mm]\in[/mm] B
> ein
> > > [mm]t_{0} \in[/mm]
> > > > (0,1) existiert.
>  >  >  
> > > Was ist los ?????
>  >  >  
> > > Sei x [mm]\in[/mm] B und g(t):=f(tx)  für t [mm]\in[/mm] [0,1]
>  >  >  
> > > Es ex. ein [mm]t_0 \in[/mm] (0,1) mit  [mm]g'(t_{0})= \bruch{g(1)-g(0)}{1-0}=f(x)-f(0)[/mm]
>  
> >  

> > >  

> > > Berchne doch mal [mm]g'(t_0)[/mm]    !!!!!
>  >  
> > [mm]g'(t_{0})[/mm] = [mm]f'(t_{0}*x)*x[/mm]
>  >  
> > Das ist mir klar. Aber wie schreibe ich das im
> > mehrdimensionalen auf. Sorry, aber ich kann es mir gerade
> > echt nicht vorstellen wie ich das machen kann.
>  
> Du hast doch schon alles !!!!
>  
> Es ist
>  
> [mm]\summe_{i=1}^{n} x_{i}\cdot{}\bruch{\partial f}{\partial x_{i}}\cdot{}(t_{0}\cdot{}x) =f'(t_{0}*x)*x=g'(t_0)=f(x)-f(0)[/mm]
>  
> Fertig !

Aber ich habe doch nur gezeigt, dass [mm] f'(t_{0}*x)*x=g'(t_0)=f(x)-f(0) [/mm] und nicht, dass das auch gleich der Summe ist. :-(

>  
> FRED
>  >  
> > >  

> > > FRED
>  >  >  >  >  
> > > > > FRED
>  >  >  >  >  
> > > >  

> > >  

> >  

>  


Bezug
                                                        
Bezug
Partielle Diffbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:21 Di 05.08.2014
Autor: fred97


> > > > > > > Sei [mm]B:={x\in \IR^{n}: ||x||<1}[/mm] und sei f: B [mm]\to \IR[/mm] eine
> > > > > > > differenzierbare Funktion. Zeigen Sie: Zu jedem
> > > > > > > [mm]x=(x_{1},....,x_{n})[/mm]
>  >  >  >  >  >  
> > > > > >
> > > > > > Es soll wohl x [mm]\in[/mm] B sein.
>  >  >  >  >  
> > > > > Die Mengenklammer wurde nichz angezeigt, ich habe es
> > > > > korrigiert.
>  >  >  >  >  
> > > > > >  

> > > > > >
> > > > > >
> > > > > > >  existiert ein [mm]t_{0} \in[/mm] (0,1) mit

> > > > > > > f(x)-f(0) = [mm]\summe_{i=1}^{n} x_{i}*\bruch{\partial f}{\partial x_{i}}*(t_{0}*x)[/mm]
>  
> >  

> > >  

> > > >  

> > > > >  

> > > > > >  

> > > > > > >  

> > > > > > > Ich habe leider keine Idee, wie ich an die Sache rangehen
> > > > > > > soll.
> > > > > >
> > > > > > Sei x [mm]\in[/mm] B und g(t):=f(tx)  für t [mm]\in[/mm] [0,1].
>  >  >  >  >  >  
> > > > > > Wende den eindimensionalen Mittelwertsatz auf die Differenz
> > > > > > g(1)-g(0) an.
>  >  >  >  >   [mm]g'(t_{0})= \bruch{g(1)-g(0)}{1-0}[/mm]
>  >  >  >  >

>  
> > > > > Ah ok, ich sehe es. Die Summe kommt daher, da
> > > > > [mm]x=(x_{1},....,x_{n})[/mm]
>  >  >  >  >  Aber wie zeige ich jetzt, dass zu jedem x [mm]\in[/mm]
> B
> > ein
> > > > [mm]t_{0} \in[/mm]
> > > > > (0,1) existiert.
>  >  >  >  
> > > > Was ist los ?????
>  >  >  >  
> > > > Sei x [mm]\in[/mm] B und g(t):=f(tx)  für t [mm]\in[/mm] [0,1]
>  >  >  >  
> > > > Es ex. ein [mm]t_0 \in[/mm] (0,1) mit  [mm]g'(t_{0})= \bruch{g(1)-g(0)}{1-0}=f(x)-f(0)[/mm]
>  
> >  

> > >  

> > > >  

> > > > Berchne doch mal [mm]g'(t_0)[/mm]    !!!!!
>  >  >  
> > > [mm]g'(t_{0})[/mm] = [mm]f'(t_{0}*x)*x[/mm]
>  >  >  
> > > Das ist mir klar. Aber wie schreibe ich das im
> > > mehrdimensionalen auf. Sorry, aber ich kann es mir gerade
> > > echt nicht vorstellen wie ich das machen kann.
>  >  
> > Du hast doch schon alles !!!!
>  >  
> > Es ist
>  >  
> > [mm]\summe_{i=1}^{n} x_{i}\cdot{}\bruch{\partial f}{\partial x_{i}}\cdot{}(t_{0}\cdot{}x) =f'(t_{0}*x)*x=g'(t_0)=f(x)-f(0)[/mm]
>  
> >  

> > Fertig !
>  Aber ich habe doch nur gezeigt, dass
> [mm]f'(t_{0}*x)*x=g'(t_0)=f(x)-f(0)[/mm] und nicht, dass das auch
> gleich der Summe ist. :-(

ÄÄÄHmmmm...  ist das Dein Ernst ??

Was verstehst Du denn unter [mm] $f'(t_{0}*x)*x$ [/mm] ?

FRED

>  >  
> > FRED
>  >  >  
> > > >  

> > > > FRED
>  >  >  >  >  >  
> > > > > > FRED
>  >  >  >  >  >  
> > > > >  

> > > >  

> > >  

> >  

>  


Bezug
                                                        
Bezug
Partielle Diffbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Di 05.08.2014
Autor: Marcel

Hallo,

> > > > > > > Sei [mm]B:={x\in \IR^{n}: ||x||<1}[/mm] und sei f: B [mm]\to \IR[/mm] eine
> > > > > > > differenzierbare Funktion. Zeigen Sie: Zu jedem
> > > > > > > [mm]x=(x_{1},....,x_{n})[/mm]
>  >  >  >  >  >  
> > > > > >
> > > > > > Es soll wohl x [mm]\in[/mm] B sein.
>  >  >  >  >  
> > > > > Die Mengenklammer wurde nichz angezeigt, ich habe es
> > > > > korrigiert.
>  >  >  >  >  
> > > > > >  

> > > > > >
> > > > > >
> > > > > > >  existiert ein [mm]t_{0} \in[/mm] (0,1) mit

> > > > > > > f(x)-f(0) = [mm]\summe_{i=1}^{n} x_{i}*\bruch{\partial f}{\partial x_{i}}*(t_{0}*x)[/mm]
>  
> >  

> > >  

> > > >  

> > > > >  

> > > > > >  

> > > > > > >  

> > > > > > > Ich habe leider keine Idee, wie ich an die Sache rangehen
> > > > > > > soll.
> > > > > >
> > > > > > Sei x [mm]\in[/mm] B und g(t):=f(tx)  für t [mm]\in[/mm] [0,1].
>  >  >  >  >  >  
> > > > > > Wende den eindimensionalen Mittelwertsatz auf die Differenz
> > > > > > g(1)-g(0) an.
>  >  >  >  >   [mm]g'(t_{0})= \bruch{g(1)-g(0)}{1-0}[/mm]
>  >  >  >  >

>  
> > > > > Ah ok, ich sehe es. Die Summe kommt daher, da
> > > > > [mm]x=(x_{1},....,x_{n})[/mm]
>  >  >  >  >  Aber wie zeige ich jetzt, dass zu jedem x [mm]\in[/mm]
> B
> > ein
> > > > [mm]t_{0} \in[/mm]
> > > > > (0,1) existiert.
>  >  >  >  
> > > > Was ist los ?????
>  >  >  >  
> > > > Sei x [mm]\in[/mm] B und g(t):=f(tx)  für t [mm]\in[/mm] [0,1]
>  >  >  >  
> > > > Es ex. ein [mm]t_0 \in[/mm] (0,1) mit  [mm]g'(t_{0})= \bruch{g(1)-g(0)}{1-0}=f(x)-f(0)[/mm]
>  
> >  

> > >  

> > > >  

> > > > Berchne doch mal [mm]g'(t_0)[/mm]    !!!!!
>  >  >  
> > > [mm]g'(t_{0})[/mm] = [mm]f'(t_{0}*x)*x[/mm]
>  >  >  
> > > Das ist mir klar. Aber wie schreibe ich das im
> > > mehrdimensionalen auf. Sorry, aber ich kann es mir gerade
> > > echt nicht vorstellen wie ich das machen kann.
>  >  
> > Du hast doch schon alles !!!!
>  >  
> > Es ist
>  >  
> > [mm]\summe_{i=1}^{n} x_{i}\cdot{}\bruch{\partial f}{\partial x_{i}}\cdot{}(t_{0}\cdot{}x) =f'(t_{0}*x)*x=g'(t_0)=f(x)-f(0)[/mm]
>  
> >  

> > Fertig !
>  Aber ich habe doch nur gezeigt, dass
> [mm]f'(t_{0}*x)*x=g'(t_0)=f(x)-f(0)[/mm] und nicht, dass das auch
> gleich der Summe ist. :-(

es ist [mm] $g(t)=g_x(t):=f(t*x)\,.$ [/mm] (Beachte $f [mm] \colon \IR^n \supseteq [/mm] B [mm] \to \IR\,,$ [/mm] und
für $x [mm] \in [/mm] B$ und $0 [mm] \le [/mm] t [mm] \le [/mm] 1$ ist auch $t*x [mm] \in B\,;$ [/mm] insbesondere [mm] $g_x \colon [/mm] [0,1] [mm] \to \IR$). [/mm]
Kennst Du die

    []Kettenregel (Satz 19.15)?

Damit

    [mm] $g'(t)=\frac{d}{dt}g(t)=\frac{d}{dt}(f \circ h)(t)=J_f(h(t))*J_h(t)$ [/mm]

mit [mm] $h(t)=h_x(t):=t*x$ [/mm] und [mm] $h=h_x \colon [/mm] [0,1] [mm] \to [/mm] B [mm] \subseteq \IR^n\,.$ [/mm]

Dabei ist [mm] $J_f=(\nabla f)^T$ [/mm] eine $1 [mm] \times [/mm] n$-Matrix (Zeilenvektor mit [mm] $n\,$ [/mm] Einträgen) und
[mm] $J_h(t)=x\,$ [/mm] eine $n [mm] \times [/mm] 1$-Matrix (Spaltenvektor mit [mm] $n\,$ [/mm] Einträgen).

Wie sieht [mm] $\nabla [/mm] f$ aus? Was ist demnach [mm] $\nabla [/mm] f (h(t))$ (also [mm] $\nabla [/mm] f$ ausgewertet an der
Stelle $h(t)$)?

Also

    [mm] $g'(t_0)=J_f(h(t_0)) \cdot J_h(t_0)=(\nabla f(h(t_0)))^T \cdot x=(\nabla f(t_0*x))^T*x=...$ [/mm]

Das solltest Du nun aber wirklich sehen, oder?!

Gruß,
  Marcel

Bezug
                                                                
Bezug
Partielle Diffbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:58 Di 05.08.2014
Autor: Calculu

Oh je. Ja klar, das war gerade peinlich, aber ich habs nicht gesehen. Danke euch beiden für die Geduld! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]