matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenPartielle Diffbarkeit zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle Diffbarkeit zeigen
Partielle Diffbarkeit zeigen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Diffbarkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 Mi 30.07.2014
Autor: rollroll

Aufgabe
Sei [mm] f:IR^n [/mm] --> IR in 0 partiell diffbar mit f(0)=0 und sei [mm] g:IR^n [/mm] --> IR stetig in 0. Zeige, dass [mm] h:IR^n-->IR, [/mm] h(x)=f(x)g(x) in 0 partiell  diffbar ist und berechne grad h(0).

Hallo,

es ist im Nullpunkt:  [mm] \limes_{h\rightarrow0} \bruch{h(x+he_i)-h(x)}{h}= \limes_{h\rightarrow0} \bruch{f(he_i)}{h} [/mm] *  [mm] \limes_{h\rightarrow0} g(he_i) [/mm] = [mm] \bruch{\partial f}{\partial x_i}(0) [/mm] *  [mm] \limes_{h\rightarrow0} g(he_i) [/mm] und der rechte Faktor existiert, weil g stetig in 0 ist, stimmt das so? Dann wäre ja gradh(0)=0

        
Bezug
Partielle Diffbarkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:19 Do 31.07.2014
Autor: Marcel

Hallo,

> Sei [mm]f:IR^n[/mm] --> IR in 0 partiell diffbar mit f(0)=0 und sei
> [mm]g:IR^n[/mm] --> IR stetig in 0. Zeige, dass [mm]h:IR^n-->IR,[/mm]
> h(x)=f(x)g(x) in 0 partiell  diffbar ist und berechne grad
> h(0).
>  Hallo,
>  
> es ist im Nullpunkt:  [mm]\limes_{h\rightarrow0} \bruch{h(x+he_i)-h(x)}{h}= \limes_{h\rightarrow0} \bruch{f(he_i)}{h}[/mm] *  [mm]\limes_{h\rightarrow0} g(he_i)[/mm]

Warum schreibst Du immer [mm] $x\,$ [/mm] für [mm] $x=0\,,$ [/mm] anstatt dort direkt [mm] $0\,$ [/mm] zu schreiben?
Also: Anstatt zu sagen, es ist $x=0 [mm] \in \IR^n$ [/mm] und dann

    [mm] $\frac{\partial h(x)}{\partial x_i}=\limes_{h\rightarrow0} \bruch{h(x+he_i)-h(x)}{h}=...\,,$ [/mm]

schreibe doch direkt

    [mm] $\frac{\partial h(0)}{\partial x_i}=\limes_{h\rightarrow0} \bruch{h(0+he_i)-h(0)}{h}$ [/mm]

Wobei es hier auch einen formalen "Lapsus" gibt. Wenn Du die Funktion [mm] $h\,$ [/mm]
schon hast, dann solltest Du nicht mehr [mm] $h\,$ [/mm] als Variablenbezeichnung für
eine reelle Zahl (die gegen [mm] $0\,$ [/mm] laufen gelassen wird) nehmen. Schau'
mal, wie ich das unten schreibe - wenn Du dort das rote [mm] $t\,$ [/mm] durch [mm] $h\,$ [/mm] ersetzt,
dann sieht mindestens der Term nach dem ersten Gleichheitszeichen
merkwürdig aus. Zumal man auch fragen könnte, wie man denn die
Funktion [mm] $h\,$ [/mm] gegen Null laufen lassen solle?

> = [mm]\bruch{\partial f}{\partial x_i}(0)[/mm] *  [mm]\limes_{h\rightarrow0} g(he_i)[/mm] und der rechte Faktor
> existiert, weil g stetig in 0 ist, stimmt das so?

Ich rechne mal selbst

    [mm] $\frac{\partial h(0)}{\partial x_i}=\limes_{\red{t}\rightarrow0} \bruch{h(0+\red{t}e_i)-h(0)}{\red{t}}=\lim_{\red{t} \to 0}\frac{f(0+\red{t}*e_i)*g(0+\red{t}*e_i)-f(0)*g(0)}{\red{t}}=\lim_{\red{t} \to 0}\frac{f(0+\red{t}*e_i)}{\red{t}}*\lim_{\red{t} \to 0}g(\red{t}*e_i)=\frac{\partial f(0)}{\partial x_i}*g(0)=g(0)*\frac{\partial f(0)}{\partial x_i}$ [/mm]

gilt für alle $i [mm] \in \{1,...,n\}\,.$ [/mm]

Du hast also richtig gerechnet, Du solltest vielleicht bzgl.

    [mm] $\lim_{h \to 0}g(h*e_i)$ [/mm]

nur noch ergänzen, dass wir nicht nur die Existenz, sondern sogar den
Wert dieses Grenzwertes kennen: Es ist [mm] $g(0)\,$ [/mm] (mit $0 [mm] \in \IR^n$). [/mm]

> Dann wäre ja gradh(0)=0

Nein, es ist doch

    [mm] $\nabla h(0)=g(0)*\nabla f(0)\,.$ [/mm]

Etwa im Falle [mm] $g(0)=0\,$ [/mm] (das wissen wir aber nicht - es war nur [mm] $f(0)=0\,$ [/mm] gesagt!)
würde Deine Folgerung stimmen!

P.S. Schreibe doch bitte [mm] $\IR^n$ [/mm] und [mm] $\to$ [/mm] etc. mit dem Formeleditor. Es ist einfach
sehr viel angenehmer zu lesen. Und ich denke eigentlich, dass Du auch
schon lange genug dabei bist, um zu wissen, wo man die Befehle dazu
findet (ansonsten: es sind i.W. Latex-Befehle) bzw. wie man sie sich selbst
erarbeiten kann (auf Formeln klicken oder Mauszeiger drüberhalten oder ...).
Wenn es unbedingt nötig ist, kann ich Dir auch hier nochmal Links dazu
schreiben.

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]