matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisPartielle Differenzierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Partielle Differenzierung
Partielle Differenzierung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Differenzierung: Frage
Status: (Frage) beantwortet Status 
Datum: 17:37 Do 16.06.2005
Autor: bingoline

Hallo

Habe eine Seminararbeit zum Thema Innovationszeitpunkt und Kosten. Darin ist eine Formel zu den Kosten enthalten zu der ich in einem Buch forlgende Aussage finde:
[mm] C_T<0, C_A>0, C_h<0 [/mm] und [mm] C_r<0 [/mm]
Wobei die Indizierung des angezeigten Argumentes die partielle Differenzierung nach diesem kennzeichnet.
Die Formel dazu Lautet
[mm] C(T,A;h,r)=A^{1/\gamma}(((r+h)\gamma)^{1/\gamma}(exp^{(r+h)/\gamma}-1)^{-1/\gamma}) [/mm]

T ist der optimale geplanter Innovationszeitpunkt
A effektive Forschungs und Entwicklungsaufwand
h ist die Konkurrenzintensität (Hazard Rate)
r ist der Zinssatz
a ist der Effektivitätsparameter
wobei [mm] \gamma=a/(1-a) [/mm]

So mein großes Problem ist nun was sagen die zu erst genannten Gleichungen aus? Was kann ich daran sehen?
Bitte schnellstmöglichst um Hilfe! :-)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Partielle Differenzierung: Formel?
Status: (Antwort) fertig Status 
Datum: 21:38 Do 16.06.2005
Autor: MathePower

Hallo bingoline,

[willkommenmr]

> Habe eine Seminararbeit zum Thema Innovationszeitpunkt und
> Kosten. Darin ist eine Formel zu den Kosten enthalten zu
> der ich in einem Buch forlgende Aussage finde:
>  [mm]C_T<0, C_A>0, C_h<0[/mm] und [mm]C_r<0[/mm]
>  Wobei die Indizierung des angezeigten Argumentes die
> partielle Differenzierung nach diesem kennzeichnet.
>  Die Formel dazu Lautet
>  
> [mm]C(T,A;h,r)=A^{1/\gamma}(((r+h)\gamma)^{1/\gamma}(exp^{(r+h)/\gamma}-1)^{-1/\gamma})[/mm]

Ist diese Formel gemeint:

[mm] C\left( {T,\;A,\;h,\;r} \right)\; = \;\left( {\frac{{A\;\left( {r\; + \;h} \right)\;\gamma }}{{e^{\frac{{r\; + \;h}}{\gamma }} \; - \;1}}} \right)^{\frac{1}{\gamma }} [/mm]

>  
> T ist der optimale geplanter Innovationszeitpunkt
>  A effektive Forschungs und Entwicklungsaufwand
>  h ist die Konkurrenzintensität (Hazard Rate)
>  r ist der Zinssatz
>  a ist der Effektivitätsparameter
>  wobei [mm]\gamma=a/(1-a)[/mm]

In der oben angegebenen Formel sehe ich keinen Parameter T.

Gruß
MathePower



Bezug
        
Bezug
Partielle Differenzierung: Fehler von mir!
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:04 Do 16.06.2005
Autor: bingoline

Hallo

Bin begeistert von der schnellen Reaktion! :-)


[mm] C(T,A;h,r)=A^{1/\gamma}(((r+h)\gamma)^{1/\gamma}(exp^{(r+h)T\gamma}-1)^{-1/\gamma}) [/mm]

Hab leider ein T unterschlagen und auch gerade noch ein Fehler gesehen.
Zwecks Fragestellung. Mir geht es nich so sehr darum, dass mir hier jemand eine ausführliche Begründung gibt. Ich möchte nur wissen, wie ich am besten bei so einer Formel die [mm] C_T [/mm] usw. interpretieren kann bzw. was ich daran sehe.
Vielen Dank nochmals.
Grüße
bingoline


Bezug
                
Bezug
Partielle Differenzierung: Wie eindimensional
Status: (Antwort) fertig Status 
Datum: 23:02 Do 16.06.2005
Autor: leduart

Hallo
Wenn ich dich richtig verstanden hab, ght es dir nicht darum die Ableitungen zu berechnen?
dann bedeutet etwa [mm] C_{T}<0 [/mm]  dass C solange man nur T ändert eine fallende Funktion ist, d.h bei Vergrößerung von T wird C kleiner, bei Verkleinerung von T wird C größer.
Entsprechend [mm] C_{A}>0 [/mm] wenn man A vergrößert, vergrößert sich C. Also kannst du, solange du nur eine Änderung betrachtest wie bei gewöhnlichen eindimensionalen Funktionen argumentieren.
War das die Frage? Sonst meld dich einfach wieder.
gruss leduart

Bezug
        
Bezug
Partielle Differenzierung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:50 Fr 17.06.2005
Autor: bingoline

Hallo alle zusammen!

Vielen Dank für die schnellen Antworten. Jetzt weiß ich wenigstens wie ich so etwas interpretieren kann.
Großes Lob. Hätte ich nur gewußt, dass es so etwas gibt, als ich auf dem Gymnasium war! :-)
Grüße bingoline

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]