matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationPartielle Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Partielle Integration
Partielle Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: Korrektur/Tipp
Status: (Frage) beantwortet Status 
Datum: 16:37 Mi 16.07.2014
Autor: NoJoke

Hallo,

es geht wieder um einen partiellen Integration.

[mm] \integral {\bruch{ln(x)}{x} dx} [/mm]

  u= ln(x)  [mm] u´=\bruch{1}{x} [/mm]
  v´= [mm] \bruch{1}{x} [/mm]     v= ln(x)

=u*v - [mm] \integral{u' * v dx} [/mm]

= ln(x)*ln(x) - [mm] \integral{\bruch{1}{x} * ln(x) dx} [/mm]
[mm] =ln^{2}(x) [/mm] - ln(x)*x(ln(x)-1)
wie kann ich das am Ende zusammenfassen? Oder muss ich das überhaupt zusammenfassen ? danke
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Mi 16.07.2014
Autor: rmix22

Hallo!

> Hallo,
>  
> es geht wieder um einen partiellen Integration.
>  
> [mm]\integral {\bruch{ln(x)}{x} dx}[/mm]
>  
> u= ln(x)  [mm]u´=\bruch{1}{x}[/mm]
>    v´= [mm]\bruch{1}{x}[/mm]     v= ln(x)
>  
> =u*v - [mm]\integral{u' * v dx}[/mm]
>  
> = ln(x)*ln(x) - [mm]\integral{\bruch{1}{x} * ln(x) dx}[/mm]

Bis jetzt ist es [ok]
  

> [mm]=ln^{2}(x)[/mm] - ln(x)*x(ln(x)-1)

Und was soll das hier darstellen. Hast du jetzt locker aus der Hüfte das verbleibende Integral (falsch) gelöst?

Fällt dir nicht auf, dass das verbleibende Integral genau jenes aus der Angabe ist? Nennen wir das gesuchte Integral der Einfachheit halber $I$. Dann hast du bisher berechnet:

     [mm] $\underline{I}=\integral {\bruch{ln(x)}{x} dx}=\ldots=ln(x)*ln(x)-\integral{\bruch{1}{x} * ln(x) dx}=\underline{ln^2{x}-I}$ [/mm]
Der unterstrichene Teil stell eine Gleichung dar, die wir nach I, also dem gesuchten Integral, leicht auflösen können und wir erhalten
     [mm] $I=\frac{1}{2}*ln^2{x}$ [/mm]
und sind fertig.

Das Beispiel lässt sich übrigens leichter mit Substitution [mm] $(u=ln\;x)$ [/mm] lösen.
Oder du kennst die "Regel" [mm] $\integral{f(g(x))*g'(x)}dx=F(g(x))$ [/mm] (das ist quasi die Umkehrung der Kettenregel beim Ableiten) und ersparst dir dabei das explizite Anschreiben der Substitution. $F$ ist dabei eine Stammfunktion von $f$.
Also
     [mm] $\integral{(ln\;x)^1*\frac{1}{x}}dx=\ldots$ [/mm]
man sieht bei dieser Schreibweise deutlich, dass die Ableitung der "inneren" Funktion [mm] $(ln\;x)$ [/mm] als Faktor daneben steht und man daher nur mehr die "äußere" Funktion $(\ [mm] ()^1\ [/mm] )$ integrieren muss:
     [mm] $\ldots=\frac{(ln\;x)^2}{2}+C$. [/mm]

Gruß RMix




Bezug
                
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 Mi 16.07.2014
Autor: NoJoke

Entschuldigung  dass ich so spät antworte..
und wie soll ich dann [mm] \integral{ \bruch{1}{x}* ln(x) dx} [/mm]
lösen ist ja wieder ein Produkt?

Bezug
                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Mi 16.07.2014
Autor: schachuzipus

Hallo,

> Entschuldigung dass ich so spät antworte..
> und wie soll ich dann [mm]\integral{ \bruch{1}{x}* ln(x) dx}[/mm]
> lösen ist ja wieder ein Produkt?

Nein, stelle die erhaltene Gleichung nach dem Integral um und teile durch den Vorfaktor ....

Gem. meinem Vorredner ist

[mm]\red{\int{\frac{\ln(x)}{x} \ dx}} \ = \ \ln^2(x) \ - \red{\int{\frac{\ln(x)}{x} \ dx}}[/mm]

Rechne also auf beiden Seiten [mm]+\red{\int{\frac{\ln(x)}{x} \ dx}}[/mm] und löse dann nach dem Integral auf ...

Gruß

schachuzipus

Bezug
                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 Mi 16.07.2014
Autor: rmix22


> Entschuldigung  dass ich so spät antworte..
>  und wie soll ich dann [mm]\integral{ \bruch{1}{x}* ln(x) dx}[/mm]
> lösen ist ja wieder ein Produkt?  

Ich hatte ja schon Bedenken, dass ich zu viel vorgerechnet und dich damit um die Chance, dich selbst auch einzubringen gebracht hätte.

Also wie es scheint hast du wirklich noch nicht bemerkt, dass diese "neue" sich ergebende Integral gar nicht so neu ist und ja genau das Integral ist, dass in der Angabe steht und das du berechnen möchtest! Du kommst also auf eine Gleichung in dem gesuchten Integral, welche du leicht lösen kannst. Hast du das beim Lesen meiner Antwort überlesen?

Es gilt ja wohl
     [mm]\integral{ \bruch{1}{x}* ln(x) dx}=\integral{ \bruch{ln(x)}{x}dx}[/mm]



Bezug
        
Bezug
Partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:14 Mi 16.07.2014
Autor: NoJoke

Ich soll das mittels partieller Integration machen steht konkret in der Aufgabe deswegen habe ich es so gemacht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]