matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenPartielle, bzw. Totale Diff
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle, bzw. Totale Diff
Partielle, bzw. Totale Diff < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle, bzw. Totale Diff: Differnzierbarkeit
Status: (Frage) beantwortet Status 
Datum: 19:09 Sa 11.06.2011
Autor: zoj

Aufgabe
[mm] f(n)=\begin{cases} \bruch{x^{2}y^{4}}{x^{2}+y^{4}}, & \mbox{für } (x,y) \not= (0,0) \mbox{} \\ 0, & \mbox{für } (x,y)=(0,0) \mbox{ ungerade} \end{cases} [/mm]

In welchen Punkten ist f partiell bzw. total differenzierbar? Berechnen Sie jeweils die entsprechenden Ableitungen.

Mein Problem bei dieser Aufgabe ist, dass ich nicht weiß, wie man vorgehen muss.
Um die Vorgehenweise zu erfahren, habe ich mir eine Mathematische Formelsammlung von Papula ausgeliehen.
Ich muss es lernen aus bem Buch zu verstehen.

Dort stehen unter "Partielle Ableitungen" folgende Formeln:

[mm] f_{x}(x,y) [/mm] = [mm] \limes_{\Delta x\rightarrow 0} \bruch{f(x + \Delta x;y)-f(x;y)}{\Delta x} [/mm]
[mm] f_{y}(x,y) [/mm] = [mm] \limes_{\Delta y\rightarrow 0} \bruch{f(x;y + \Delta y)-f(x;y)}{\Delta y} [/mm]

D.h wenn die Grenzwerte beider partieller Ableitungen erster Ordnung in den Punkt (0,0) den selben Funktionswert haben, ist f in dem Punkt (0,0) partiell Differenzierbar.
Stimmt das?

Umgesetzt sieht meine Lösung so aus:
[mm] f_{x}(x,y) [/mm] = [mm] \limes_{\Delta x\rightarrow 0} \bruch{f(x + \Delta x;y)-f(x;y)}{\Delta x} [/mm] = [mm] \limes_{\Delta x\rightarrow 0} \bruch{\bruch{(0 + \Delta x)^{2}(0)}{(0 + \Delta x)^{2}+(0)}}{\Delta x} [/mm] = 0

[mm] f_{y}(x,y) [/mm] = [mm] \limes_{\Delta y\rightarrow 0} \bruch{f(x;y +\Delta y)-f(x;y)}{\Delta y} [/mm] = [mm] \limes_{\Delta y\rightarrow 0} \bruch{\bruch{(0)(0+ \Delta y)^{4}}{(0)+(0+ \Delta y)^{4}}}{\Delta y} [/mm] = 0

Somit stimmt der Grenzwert beider partieller Ableitungen überein und f wäre demnach partiell differenzierbar in (0,0).

Ist es soweit richtig?

Jetzt noch eine Verständnis-Frage: Bei der Grenzwert-Betrachtung steht im Nenner der Formel immer ein [mm] \Delta [/mm] * Variable.
Wenn der Grenzwert gegen Null geht, so geht der Nenner gegen Null und somit auch der gesammte Ausdruck.
Demnach ist der Grenzwert beliebiger Funktionen Null, wenn der Grenzwert gegen Null geht.
Das kann aber nicht sein, den es muss auch Funktionen geben, die im Ursprung nicht partiell differenzierbar sind.

Habe ich was falsch interpretiert?
Klärt mich auf




        
Bezug
Partielle, bzw. Totale Diff: Antwort
Status: (Antwort) fertig Status 
Datum: 10:36 So 12.06.2011
Autor: MathePower

Hallo zoj,

> [mm]f(n)=\begin{cases} \bruch{x^{2}y^{4}}{x^{2}+y^{4}}, & \mbox{für } (x,y) \not= (0,0) \mbox{} \\ 0, & \mbox{für } (x,y)=(0,0) \mbox{ ungerade} \end{cases}[/mm]
>  
> In welchen Punkten ist f partiell bzw. total
> differenzierbar? Berechnen Sie jeweils die entsprechenden
> Ableitungen.
>  Mein Problem bei dieser Aufgabe ist, dass ich nicht weiß,
> wie man vorgehen muss.
>  Um die Vorgehenweise zu erfahren, habe ich mir eine
> Mathematische Formelsammlung von Papula ausgeliehen.
> Ich muss es lernen aus bem Buch zu verstehen.
>  
> Dort stehen unter "Partielle Ableitungen" folgende
> Formeln:
>  
> [mm]f_{x}(x,y)[/mm] = [mm]\limes_{\Delta x\rightarrow 0} \bruch{f(x + \Delta x;y)-f(x;y)}{\Delta x}[/mm]
>  
> [mm]f_{y}(x,y)[/mm] = [mm]\limes_{\Delta y\rightarrow 0} \bruch{f(x;y + \Delta y)-f(x;y)}{\Delta y}[/mm]
>  
> D.h wenn die Grenzwerte beider partieller Ableitungen
> erster Ordnung in den Punkt (0,0) den selben Funktionswert
> haben, ist f in dem Punkt (0,0) partiell Differenzierbar.
>  Stimmt das?


Mit den Formeln berechnest Du doch erst
die partiellen Ableitungen für [mm]\left(x,y\right) \not= \left(0,0\right)[/mm].

Dann erst kannst Du den Grenzwert für [mm]\left(x,y\right) \to \left(0,0\right)[/mm] berechnen.


>  
> Umgesetzt sieht meine Lösung so aus:
>  [mm]f_{x}(x,y)[/mm] = [mm]\limes_{\Delta x\rightarrow 0} \bruch{f(x + \Delta x;y)-f(x;y)}{\Delta x}[/mm]
> = [mm]\limes_{\Delta x\rightarrow 0} \bruch{\bruch{(0 + \Delta x)^{2}(0)}{(0 + \Delta x)^{2}+(0)}}{\Delta x}[/mm]
> = 0
>  
> [mm]f_{y}(x,y)[/mm] = [mm]\limes_{\Delta y\rightarrow 0} \bruch{f(x;y +\Delta y)-f(x;y)}{\Delta y}[/mm]
> = [mm]\limes_{\Delta y\rightarrow 0} \bruch{\bruch{(0)(0+ \Delta y)^{4}}{(0)+(0+ \Delta y)^{4}}}{\Delta y}[/mm]
> = 0
>  
> Somit stimmt der Grenzwert beider partieller Ableitungen
> überein und f wäre demnach partiell differenzierbar in
> (0,0).
>  
> Ist es soweit richtig?
>  
> Jetzt noch eine Verständnis-Frage: Bei der
> Grenzwert-Betrachtung steht im Nenner der Formel immer ein
> [mm]\Delta[/mm] * Variable.
> Wenn der Grenzwert gegen Null geht, so geht der Nenner
> gegen Null und somit auch der gesammte Ausdruck.
>  Demnach ist der Grenzwert beliebiger Funktionen Null, wenn
> der Grenzwert gegen Null geht.
>  Das kann aber nicht sein, den es muss auch Funktionen
> geben, die im Ursprung nicht partiell differenzierbar
> sind.
>  
> Habe ich was falsch interpretiert?
>  Klärt mich auf
>  


Gruss
MathePower
  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]