matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesPartition,Quotientenm.,Familie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Partition,Quotientenm.,Familie
Partition,Quotientenm.,Familie < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partition,Quotientenm.,Familie: grundlegendes Verständnis
Status: (Frage) beantwortet Status 
Datum: 22:53 Sa 03.10.2020
Autor: ireallydunnoanything

Guten Abend !

Ich beschäftige mich vorbereitend auf das kommende Semester bereits mit einer Analysis 1 Vorlesung der Uni Tübingen. Relativ zu Beginn der Vorlesungsreihe werden die Themen Partition, Quotientenmenge und Familie besprochen.

Dabei ist mir Einiges unklar:

1. Ist eine Partition nicht das Selbe wie eine Quotientenmenge ? Es handelt sich doch bei beiden Begriffen um die Gesamtheit der Teilmengen, die durch die Einteilung in Äquivalenzklassen (disjunkte Vereinigung) entsteht. Wo liegt da der Unterschied ?

2. Könnte mir jemand grundlegend und anschaulich den Begriff "Familie" erklären ?

Viele Grüße, Alex.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Partition,Quotientenm.,Familie: Antwort
Status: (Antwort) fertig Status 
Datum: 07:07 So 04.10.2020
Autor: angela.h.b.


> 1. Ist eine Partition nicht das Selbe wie eine
> Quotientenmenge ? Es handelt sich doch bei beiden Begriffen
> um die Gesamtheit der Teilmengen, die durch die Einteilung
> in Äquivalenzklassen (disjunkte Vereinigung) entsteht. Wo
> liegt da der Unterschied ?

Hallo,

eine Partition hat zunächst einmal nichts mit "Quotientenmenge" oder "Äquivalenzrelation"zu tun.

Eine Partition P einer Menge M ist einfach eine Menge von nichtleeren Teilmengen einer Menge M mit bestimmten Eigenschaften, nämlich daß die Elemente von P paarweise disjunkt sind und ihre Vereinigung die Menge M ergibt.

Sei [mm] M:=\{1,2,3,4,5,6,7,8,9,10\}, [/mm]
dann definiert zum Beispiel [mm] P:=\{\{1,2,3,4,5\}, \{6,7,8\}, \{9\},\{10\}\} [/mm] eine Partition von M.
Fertig. Die Zutat "Äquivalenzrelation" kommt hier nicht vor!

Man kann, wenn man Lust hat, nun zu jeder Partition eine Äquivalenzrelation konstruieren, so daß die Elemente der Partition die Äquivalenzklassen der frisch konstruierten Äquivalenzrelation sind, die gegebene Partition also die Quotientenmenge dieser Äquivalenzrelation ist.
Zu jeder Partition kann man also eine passende Äquivalenzrelation maßschneidern.

Wie macht man das?
Indem man definiert, daß je zwei Elemente von M äquivalent heißen, wenn sie im selben Element der Partition P liegen.
Man kann nachweisen, daß diese Konstruktion tatsächlich die Eigenschaften einer Äquivalenzrelation hat und somit die vorgegebene Partition die Quotientenmenge dieser Äquivalenzrelation ist.



Nun zur Quotientenmenge.
Man hat eine Äquivalenzrelation auf einer Menge M.
Die Menge ihrer Äquivalenzklassen ist die Quotientenmenge dieser Äquivalenzrelation.
Man nimmt sie genauer unter die Lupe und stellt fest: das ist ja eine Partition der Menge M!


Also kurz zusammengefaßt:
jede Äquivalenzrelation auf M erzeugt eine Partition von M.
Jede Partition von M induziert eine Äquivalenzrelation auf M.


Ich hoffe, es ist dir jetzt etwas klarer geworden.


> 2. Könnte mir jemand grundlegend und anschaulich den
> Begriff "Familie" erklären ?

Da traue ich mich nicht so recht dran, solange ich euere Definition von Familie nicht kenne.

Bezug
                
Bezug
Partition,Quotientenm.,Familie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:53 So 04.10.2020
Autor: ireallydunnoanything

Vielen Dank für die Antwort, das hat mir sehr weiter geholfen. Nach der Definition der Familie werde ich nochmal nachschauen und morgen oder übermorgen nochmal posten.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]