matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriePeriodic continued fraction
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Periodic continued fraction
Periodic continued fraction < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Periodic continued fraction: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Do 15.04.2010
Autor: Arcesius

Aufgabe
Let [mm] \xi \in \IR [/mm] be an irrational number with a periodic continued fraction expansion. Show that [mm] \xi [/mm] is quadratic, i.e. is of the form [mm] a+b\sqrt{d} [/mm] for some a,b,c [mm] \in \IQ [/mm]

Hallo Zusammen

In der Vorlesung haben wir die andere Richtung gezeigt, welche ja eigentlich schwieriger ist. Diese Richtung sollte relativ "straightforward" gehen.. doch ich komme nicht drauf :)

Ich schreibe zuerst:
[mm] \xi [/mm] = [mm] [a_{0};a_{1},...,a_{n},\overline{a_{n+1},...,a_{m}}] [/mm] = [mm] [a_{0};a_{1},...,a_{n},\alpha] [/mm]    mit [mm] \alpha [/mm] = [mm] [a_{n+1},...,a_{m},\alpha] [/mm]

Ich nehme an, [mm] \xi [/mm] hat eine periodische Kettenbruchentwicklung. Mit dem obigen [mm] \alpha [/mm] kann ich schreiben:

[mm] \xi [/mm] = [mm] a_{0}+\frac{1}{a_{1}+\frac{1}{\vdots a_{n}+\frac{1}{\alpha}}} [/mm]


Wenn ich jetzt zuerst [mm] \alpha [/mm] betrachte, kriege ich:

[mm] \alpha [/mm] = [mm] [a_{n+1},...,a_{m},\alpha] [/mm] = [mm] \frac{\alpha p_{n} + p_{n-1}}{\alpha q_{n} + q_{n-1}} [/mm]   wobei hier [mm] \frac{p_{n}}{q_{n}} [/mm] die n'te Konvergenz ist.  

Jetzt kann ich [mm] \xi [/mm] umschreiben als:

[mm] \xi [/mm] = [mm] a_{0}+\frac{1}{a_{1}+\frac{1}{\vdots a_{n}+\frac{\alpha q_{n} + q_{n-1}}{\alpha p_{n} + p_{n-1}}}} [/mm]


Wie soll ich hier weitermachen?

Ich bin um jede Hilfe dankbar :)


Grüsse, Amaro

        
Bezug
Periodic continued fraction: Antwort
Status: (Antwort) fertig Status 
Datum: 22:43 Do 15.04.2010
Autor: felixf

Moin Amaro!

> Let [mm]\xi \in \IR[/mm] be an irrational number with a periodic
> continued fraction expansion. Show that [mm]\xi[/mm] is quadratic,
> i.e. is of the form [mm]a+b\sqrt{d}[/mm] for some a,b,c [mm]\in \IQ[/mm]
>  
> Hallo Zusammen
>  
> In der Vorlesung haben wir die andere Richtung gezeigt,
> welche ja eigentlich schwieriger ist. Diese Richtung sollte
> relativ "straightforward" gehen.. doch ich komme nicht
> drauf :)
>  
> Ich schreibe zuerst:
>  [mm]\xi[/mm] = [mm][a_{0};a_{1},...,a_{n},\overline{a_{n+1},...,a_{m}}][/mm]
> = [mm][a_{0};a_{1},...,a_{n},\alpha][/mm]    mit [mm]\alpha[/mm] =
> [mm][a_{n+1},...,a_{m},\alpha][/mm]
>  
> Ich nehme an, [mm]\xi[/mm] hat eine periodische
> Kettenbruchentwicklung. Mit dem obigen [mm]\alpha[/mm] kann ich
> schreiben:
>  
> [mm]\xi[/mm] = [mm]a_{0}+\frac{1}{a_{1}+\frac{1}{\vdots a_{n}+\frac{1}{\alpha}}}[/mm]
>  
>
> Wenn ich jetzt zuerst [mm]\alpha[/mm] betrachte, kriege ich:
>  
> [mm]\alpha[/mm] = [mm][a_{n+1},...,a_{m},\alpha][/mm] = [mm]\frac{\alpha p_{n} + p_{n-1}}{\alpha q_{n} + q_{n-1}}[/mm]
>   wobei hier [mm]\frac{p_{n}}{q_{n}}[/mm] die n'te Konvergenz ist.  

Wenn du jetzt das ganze mit [mm] $\alpha q_n [/mm] + [mm] q_{n-1}$ [/mm] multiplizierst, bekommst du (nach etwas umformen) eine quadratische Gleichung, deren eine Loesung [mm] $\alpha$ [/mm] ist. Daraus folgt, dass [mm] $\alpha$ [/mm] von der gesuchten Form ist.

> Jetzt kann ich [mm]\xi[/mm] umschreiben als:
>  
> [mm]\xi[/mm] = [mm]a_{0}+\frac{1}{a_{1}+\frac{1}{\vdots a_{n}+\frac{\alpha q_{n} + q_{n-1}}{\alpha p_{n} + p_{n-1}}}}[/mm]

Also ist [mm] $\xi$ [/mm] ein rationaler Ausdruck in [mm] $\alpha$. [/mm] Wenn also [mm] $\alpha$ [/mm] im Koerper [mm] $\IQ(\sqrt{d}) [/mm] = [mm] \{ a + b \sqrt{d} \mid a, b \in \IQ \}$ [/mm] liegt, dann ebenso [mm] $\xi$. [/mm]

LG Felix


Bezug
                
Bezug
Periodic continued fraction: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:01 Fr 16.04.2010
Autor: Arcesius

Hallo Felix

Na, das ist also schon fertig? Na gut.. dann bin ich froh :)

Vielen Dank (einmal wieder) für deine Hilfe!

Grüsse, Amaro

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]