matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenPicard-Lindelöf
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Picard-Lindelöf
Picard-Lindelöf < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Picard-Lindelöf: Heuser, Ana2, A117.2
Status: (Frage) beantwortet Status 
Datum: 18:56 Di 15.03.2016
Autor: sandroid

Aufgabe
Löse das folgende Anfangswertproblem iterativ:

$y' = xy$, $y(0)=1$

(Wobei iterativ in diesem Kapitel vom Heuser wohl bedeutet, mithilfe des Satzes von Picard-Lindelöf.)

Hallo,

ich komme bei dieser Aufgabe nicht weiter.

Zunächst einmal: Der Satz von Picard-Lindelöf sichert mir doch eine Lösung nur in einem bestimmten Intervall zu. So wie die Aufgabe formuliert ist, bräuchte ich aber doch eine Lösung für ganz [mm] $\mathbb{R}^2$? [/mm]

Nun, wenn ich mit [mm] $y_0 [/mm] = 1$ anfange und die ersten Iterationen durchführe mit

[mm] $y_{n+1}(x) [/mm] := [mm] 1+\integral_{0}^{x}{f(t,y_n(t)) dt}$ [/mm]

so erhalte ich natürlich immer längere Polynome. Eigentlich müsste diese Funktionenfolge ja gegen die Lösung konvergieren. Nur wie zeige ich dies?

Die Lösung nach Buch lautet ohne Kommentar: [mm] $y(x)=e^{\bruch{x^2}{2}}$. [/mm]

Vielen Dank für jede Hilfe!

Gruß,
Sandro


        
Bezug
Picard-Lindelöf: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Di 15.03.2016
Autor: fred97


> Löse das folgende Anfangswertproblem iterativ:
>  
> [mm]y' = xy[/mm], [mm]y(0)=1[/mm]
>  
> (Wobei iterativ in diesem Kapitel vom Heuser wohl bedeutet,
> mithilfe des Satzes von Picard-Lindelöf.)
>  Hallo,
>  
> ich komme bei dieser Aufgabe nicht weiter.
>  
> Zunächst einmal: Der Satz von Picard-Lindelöf sichert mir
> doch eine Lösung nur in einem bestimmten Intervall zu. So
> wie die Aufgabe formuliert ist, bräuchte ich aber doch
> eine Lösung für ganz [mm]\mathbb{R}^2[/mm]?
>  
> Nun, wenn ich mit [mm]y_0 = 1[/mm] anfange und die ersten
> Iterationen durchführe mit
>  
> [mm]y_{n+1}(x) := 1+\integral_{0}^{x}{f(t,y_n(t)) dt}[/mm]
>  
> so erhalte ich natürlich immer längere Polynome.
> Eigentlich müsste diese Funktionenfolge ja gegen die
> Lösung konvergieren. Nur wie zeige ich dies?

Wie lautet denn diese Folge von Polynome ???

Fred



>  
> Die Lösung nach Buch lautet ohne Kommentar:
> [mm]y(x)=e^{\bruch{x^2}{2}}[/mm].
>  
> Vielen Dank für jede Hilfe!
>  
> Gruß,
>  Sandro
>  


Bezug
                
Bezug
Picard-Lindelöf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:05 Di 15.03.2016
Autor: sandroid

Hallo Fred,

die Funktionenfolge lautet, sofern ich mich nicht vertue:

[mm] $y_n(x) [/mm] = [mm] \summe_{i=0}^n a_i x^{2i}$ [/mm] mit [mm] $a_i [/mm] := [mm] \produkt_{i=1}^n \bruch{1}{2i}$ [/mm] für alle [mm] $n\in \mathbb{N}$. [/mm]

Wenn ich für $x$ im Intervall $]-1,1[$ bleibe, kann ich mir vorstellen, dass die Folge konvergiert (wie zeige ich das am besten?), doch gegen eine Exponentialfunktion? Benötige ich die Definition der Exponentialfunktion als Reihe?

Und wie sieht es überhaupt außerhalb von $]-1,1[$ aus? Da gilt die Lösung wohl nicht, gibt es eine andere?

Fragen über Fragen, vielen Dank wieder für jede Hilfe.

Gruß,
Sandro

Bezug
                        
Bezug
Picard-Lindelöf: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Di 15.03.2016
Autor: fred97


> Hallo Fred,
>  
> die Funktionenfolge lautet, sofern ich mich nicht vertue:
>  
> [mm]y_n(x) = \summe_{i=0}^n a_i x^{2i}[/mm] mit [mm]a_i := \produkt_{i=1}^n \bruch{1}{2i}[/mm]
> für alle [mm]n\in \mathbb{N}[/mm].

das dachte ich mir. [mm] y_n [/mm] ist die n-te teilsumme der Potenzreihe für exp [mm] (x^2/2) [/mm]

diese Folge konvergiert auf ganz R lokal gleichmäßig


fred

>  
> Wenn ich für [mm]x[/mm] im Intervall [mm]]-1,1[[/mm] bleibe, kann ich mir
> vorstellen, dass die Folge konvergiert (wie zeige ich das
> am besten?), doch gegen eine Exponentialfunktion? Benötige
> ich die Definition der Exponentialfunktion als Reihe?
>  
> Und wie sieht es überhaupt außerhalb von [mm]]-1,1[[/mm] aus? Da
> gilt die Lösung wohl nicht, gibt es eine andere?
>  
> Fragen über Fragen, vielen Dank wieder für jede Hilfe.
>  
> Gruß,
>  Sandro


Bezug
                                
Bezug
Picard-Lindelöf: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:02 Mi 16.03.2016
Autor: sandroid


Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]