matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikPoisson-Verteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Poisson-Verteilung
Poisson-Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poisson-Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 So 24.04.2016
Autor: Reynir

Hallo,
ich würde gerne zeigen, dass die Poissonverteilung [mm] $\sigma$-additiv [/mm] ist, aber ich komme nicht recht darauf, wie ich das machen soll.
Meine Idee wäre zu sagen:
Angenommen ich habe eine Folge paarweise disjunkter Teilmengen von [mm] $\mathbb{N}_0$, [/mm] dann gilt, dass diese Teilmengen [mm] $T_i$ [/mm] wiederum aus einelementigen Mengen (einzelne natürliche Zahlen) bestehen, damit sind die [mm] $T_i$ [/mm] wieder disjunkte Vereinigungen paarweise disjunkter Mengen. Ab hier hänge ich mit dem Aufschreiben der Summe.
Kann man sich dann einfach was passend definieren, oder wie geht man hier vor?
Viele Grüße,
Reynir


        
Bezug
Poisson-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 So 24.04.2016
Autor: luis52


> Hallo,
>  ich würde gerne zeigen, dass die Poissonverteilung
> [mm]\sigma[/mm]-additiv ist, aber ich komme nicht recht darauf, wie
> ich das machen soll.


Moin, ich habe den Begriff [mm]\sigma[/mm]-Additivitaet nicht genau auf dem Schirm, meine aber, dass es um Folgendes geht.

Seien $X$ und $Y$ unabhaengig und Poisson-verteilt mit [mm] $\operatorname{E}[X]=\lambda$ [/mm] und [mm] $\operatorname{E}[Y]=\mu$. [/mm] Dann ist zu zeigen, dass $X+Y$ Poisson-verteilt ist mit [mm] $\operatorname{E}[X+Y]=\lambda+\mu$. [/mm]

Wenn das gemeint ist, so nutze z.B. den Faltungssatz.

Bezug
                
Bezug
Poisson-Verteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:10 So 24.04.2016
Autor: tobit09

Hallo Luis!


Nein, eine Mengenfunktion [mm] $P\colon\mathcal{P}(\Omega)\to[0,1]$ [/mm] nennt man Sigma-additiv, falls

       [mm] $P(\bigcup_{n\in\IN}A_n)=\sum_{n\in\IN}P(A_n)$ [/mm]

für jede Folge [mm] $(A_n)_{n\in\IN}$ [/mm] paarweise disjunkter Teilmengen [mm] $A_n\subseteq\Omega$ [/mm] gilt.


Viele Grüße
Tobias

Bezug
        
Bezug
Poisson-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 So 24.04.2016
Autor: tobit09

Hallo Reynir!


Wie habt ihr die Poisson-Verteilungen eingeführt/definiert?


Es gilt folgender Satz:

Sei [mm] $\Omega$ [/mm] eine abzählbare Menge und [mm] $p\colon\Omega\to[0,1]$ [/mm] mit [mm] $\sum_{\omega\in\Omega}p(\omega)=1$. [/mm]
Dann ist die Abbildung

       [mm] $P\colon\mathcal{P}(\Omega)\to[0,1],\quad P(A):=\sum_{\omega\in A}p(\omega)$ [/mm]

ein Wahrscheinlichkeitsmaß.


Viele Grüße
Tobias

Bezug
                
Bezug
Poisson-Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Mo 25.04.2016
Autor: Reynir

Hi,
wir haben sie so wie hier definiert: []  . Ich nehme dann an, dass es auf den Satz rauslaufen wird.
Viele Grüße,
Reynir

Bezug
                        
Bezug
Poisson-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:41 Di 26.04.2016
Autor: fred97


> Hi,
>  wir haben sie so wie hier definiert:
> []  .
> Ich nehme dann an, dass es auf den Satz rauslaufen wird.
>  Viele Grüße,
>  Reynir


Bei Poisson ist [mm] \Omega= \IN_0 [/mm] und

    [mm] p(k)=\bruch{\lambda^k}{k!}e^{- \lambda} [/mm]

Rechne nach:  [mm] \summe_{k=0}^{\infty}p(k)=1 [/mm]

FRED

Bezug
                                
Bezug
Poisson-Verteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:46 Di 26.04.2016
Autor: Reynir

Hi,
naja, das gilt direkt, weil ich auf [mm] $e^\lambda [/mm] * [mm] e^{-\lambda}$ [/mm] komme und das wird 1. Aber was mir das zur Sigmaadditivität bringt sehe ich immer noch nicht, außer man beweist den Satz.
Viele Grüße,
Reynir
PS.: Ich habe Null Ahnung von Maßtheorie, das habe ich noch nicht gehört. Wir haben Stochastik ohne gemacht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]