matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Poisson-/Binom-Verteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Statistics (applied)" - Poisson-/Binom-Verteilung
Poisson-/Binom-Verteilung < Statistics (applied) < Stochastic Theory < University < Maths <
View: [ threaded ] | ^ Forum "Statistik (Anwendungen)"  | ^^ all forums  | ^ Tree of Forums  | materials

Poisson-/Binom-Verteilung: Aufgabe
Status: (Question) answered Status 
Date: 00:57 Fr 26/06/2015
Author: DerBaum

Aufgabe
Es wird eine Insektenspeziesbetrachtet, wobei Y die Anzahl der von einem Weibchen gelegten Eier ist.
Wir nehmen an, dass
[mm] $$P(Y=k)=\frac{e^{-\lambda}}{k!}\lambda^k,\qquad k=0,1,2,3,\ldots$$ [/mm]
mit einem Parameter [mm] $\lambda>0$ [/mm] (Poisson-Verteilung)
Sei X die Anzahl von Euern eines Geleges, die Überlegen. Die Anzahl der überlebenden Eier hängt (natürlich) von der Anzahl der gelegten Eier ab. Wir wählen das Modell
$$X|Y=y [mm] \sim [/mm] B(y,p),$$
das heißt
[mm] $$P(X=k|Y=y)=\binom{y}{k}p^k(1-p)^{y-k},\qquad k=0,\ldots,y$$ [/mm]
mit einem Parameter [mm] $p\in [/mm] (0,1)$.
Bestimmen Sie die Verteilung von X, also $P(X=k)$ für [mm] $k=0,1,\ldots$. [/mm]


[mm] {\it Hinweis:} [/mm] Das Ergebnis ist wiederum eine Poisson-Verteilung (mit anderem Parameter).
Es ist
[mm] $$P_{X|Y}(y,A)=\sum\limits_{k\in A}\binom{y}{k}p^k(1-p)^{y-k}$$ [/mm]
(Sie müssen das nicht nachweisen, aber Sie sollten überlegen warum). Was ist dann also [mm] $P_X(\{k\})=\int\limits_{\mathbb{N}}P_{X|Y}(y,\{k\})\,\mathrm{d}P_Y(y)$? [/mm]

Guten Abend liebe Forenmitglieder,

ich sitze gerade an dieser Aufgabe und habe mir erste Gedanken gemacht:

Wenn ich die disjunkten Mengen [mm] $A_n:=\{Y=n\}$ [/mm] für [mm] $n\in\mathbb{N}$, [/mm] dann erhalten wir mit der  Additionsformel (oder auch Satz von der totalen W'keit genannt):

[mm] $$P(X=k)=\sum\limits_{n\in\mathbb{N}_0}P(X=k|A_n)P(A_n)=\sum\limits_{n\in\mathbb{N}_0}\binom{n}{k}p^k(1-p)^{n-k}\frac{e^{-\lambda}}{n!}\lambda^n$$ [/mm]

Stimmt dieser Schritt?
Falls ja, müsste ich dieses ja wieder in eine Form [mm] $\frac{e^{-\tau}}{k!}\tau^k$ [/mm] mit [mm] $\tau>0$ [/mm] bringen.

Ich weiß leider nicht genau, was ich mit den Hinweisen anfangen soll.

Vielen Dank und liebe Grüße
DerBaum

        
Bezug
Poisson-/Binom-Verteilung: Antwort
Status: (Answer) finished Status 
Date: 19:38 Fr 26/06/2015
Author: luis52

Moin.
  

> Wenn ich die disjunkten Mengen [mm]A_n:=\{Y=n\}[/mm] für
> [mm]n\in\mathbb{N}[/mm], dann erhalten wir mit der  Additionsformel
> (oder auch Satz von der totalen W'keit genannt):
>  
> [mm]P(X=k)=\sum\limits_{n\in\mathbb{N}_0}P(X=k|A_n)P(A_n)=\sum\limits_{n\in\mathbb{N}_0}\binom{n}{k}p^k(1-p)^{n-k}\frac{e^{-\lambda}}{n!}\lambda^n[/mm]
>  
> Stimmt dieser Schritt?

Ja.

>  Falls ja, müsste ich dieses ja wieder in eine Form
> [mm]\frac{e^{-\tau}}{k!}\tau^k[/mm] mit [mm]\tau>0[/mm] bringen.

Ja, das gelingt auch, *ich* erhalte [mm] $\tau=\lambda [/mm] p$.



Bezug
                
Bezug
Poisson-/Binom-Verteilung: Mitteilung
Status: (Statement) No reaction required Status 
Date: 20:50 Fr 26/06/2015
Author: DerBaum

Vielen Dank für deine Antwort :)

Dann habe ich das ganze verstanden.

Liebe Grüße
DerBaum

Bezug
View: [ threaded ] | ^ Forum "Statistik (Anwendungen)"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 20h 22m 5. angela.h.b.
SIntRech/Partielle Integration/Substitu
Status vor 22h 06m 5. Takota
UAnaRn/Satz Implizite Funktion System
Status vor 1d 11h 30m 2. HJKweseleit
UFina/Effektiver Zinssatz
Status vor 1d 21h 0m 3. Dom_89
DiffGlGew/Lösung der DGL bestimmen
Status vor 1d 23h 0m 2. Gonozal_IX
UWTheo/Konstruktion von ZV
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]