matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheoriePolarkoordianten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - Polarkoordianten
Polarkoordianten < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polarkoordianten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:22 Di 04.07.2006
Autor: hanesy

Aufgabe
Sei K die Kardioide [mm] r=1+cos(\varphi) [/mm] mit [mm] (0<=\varphi<= 2*\pi) [/mm] .
Berechne den Schwerpunkt K mit
[mm] K=((1/(m_2(K))* \integral_{K}^{}{(x) dm_2(x,y)},1/(m_2(K))* \integral_{K}^{}{(y) dm_2(x,y)}) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo an alle,
ich habe zu der Aufgabe folgende Frage:
so wie ich das sehe ist der Schwerpunkt in kartesischen Koordinaten gegeben ud um die in der Definition von K genannten Integrale zu berechnen muss ich doch eine Gleichung der Kardioide im Kartesischen Koordinantensystem finden oder??? ich tue mich damit nämlich sehr schwer.
Kann ich denn [mm] m_2(K) [/mm] an Hand der Polarkoordinaten berechnen oder soll ich auch hier den Weg ins Kartesische suchen ???
Habe dammit insgesamt Probleme weil die Polarkoordiaten mir ja keine integrierbare Funktion oder ähnlich liefern.
Danke daher für jede Hilfe
Viele Grüße Hannes

        
Bezug
Polarkoordianten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Di 04.07.2006
Autor: MatthiasKr

Hallo Hannes,

> Sei K die Kardioide [mm]r=1+cos(\varphi)[/mm] mit [mm](0<=\varphi<= 2*\pi)[/mm]
> .
>  Berechne den Schwerpunkt K mit
> [mm]K=((1/(m_2(K))* \integral_{K}^{}{(x) dm_2(x,y)},1/(m_2(K))* \integral_{K}^{}{(y) dm_2(x,y)})[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
> Hallo an alle,
>  ich habe zu der Aufgabe folgende Frage:
>  so wie ich das sehe ist der Schwerpunkt in kartesischen
> Koordinaten gegeben ud um die in der Definition von K
> genannten Integrale zu berechnen muss ich doch eine
> Gleichung der Kardioide im Kartesischen Koordinantensystem
> finden oder???

eigentlich nicht, nein.

ich tue mich damit nämlich sehr schwer.

>  Kann ich denn [mm]m_2(K)[/mm] an Hand der Polarkoordinaten
> berechnen oder soll ich auch hier den Weg ins Kartesische
> suchen ???

mache dir erstmal klar wie diese kurve aussieht (internet hilft!). du sollst die von der kurve eingeschlossene fläche berechnen, was ja das integral der 1-funktion über die fläche ist.

allerdings bietet es sich natürlich an, hier in polarkoordinaten zu rechnen. überlege dir hierzu, wie [mm] \varphi [/mm] und r laufen müssen um die fläche zu charakterisieren. außerdem darfst du nicht vergessen das Polar-Volumenelement zu verwenden [mm] ($dV=r\;dr\;d\varphi$). [/mm]

Hast du einmal dieses prinzip verstanden, kannst du auch leicht die weiteren integrale (mit integranden x bzw. y) bestimmen.

Gruß
Matthias




> Habe dammit insgesamt Probleme weil die Polarkoordiaten mir
> ja keine integrierbare Funktion oder ähnlich liefern.
>  Danke daher für jede Hilfe
>  Viele Grüße Hannes

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]