matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenPolstellen, Nullstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Polstellen, Nullstellen
Polstellen, Nullstellen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polstellen, Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 Do 21.02.2008
Autor: Melli1988

Aufgabe
a) Jemand behauptet, die Funktio f habe die Nullstellen -4 und 4 und die Polstellen -1und 1. Stelle das richtig.
f(x)= ((x-4)-4)/((x-1)(x+1))

b) Es geht um Asymptoten. Du erhälst folgende Gleichung bei Umformung: F(x)= [mm] (x^2-a)/(4x-12) [/mm] = 1/4x + 3/4+ 5/(4x-12)
Was hat diese Umformung mit Asymptoten zu tun?
Begründe den Zusammenhang.

a) An diesem Beispiel.. wie begründe ich es. Nullstellen sind falsch, weil bei Einsetzen nicht null rauskommt? Müsste x =8 sein. Und Polstellen sind richtig, weil es keine weitere Umformung gibt? Bisher haben wir immer den Zähler faktorisiert um etwas aus dem Nenner kürzen zu können. Hier geht das aber nicht. Hilfe?

b) Ich hab mir übnerlegt, dass die Asymptote ja sozusagen die gerade auf dem Grenzwer ist. Also Grenzwert für -/+ Unendlich machen. Aber.. ist das richtig? Wie macht man das alles :(?

Liebe Grüße


        
Bezug
Polstellen, Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Do 21.02.2008
Autor: MathePower

Hallo Melli,


> a) Jemand behauptet, die Funktio f habe die Nullstellen -4
> und 4 und die Polstellen -1und 1. Stelle das richtig.
>  f(x)= ((x-4)-4)/((x-1)(x+1))
>  
> b) Es geht um Asymptoten. Du erhälst folgende Gleichung bei
> Umformung: F(x)= [mm](x^2-a)/(4x-12)[/mm] = 1/4x + 3/4+ 5/(4x-12)

Soll wohl [mm]F\left(x\right)=\bruch{x^2-5}{4x-12}[/mm] heißen?

>  Was hat diese Umformung mit Asymptoten zu tun?
>  Begründe den Zusammenhang.
>  
> a) An diesem Beispiel.. wie begründe ich es. Nullstellen
> sind falsch, weil bei Einsetzen nicht null rauskommt?

Ja.

> Müsste x =8 sein. Und Polstellen sind richtig, weil es
> keine weitere Umformung gibt? Bisher haben wir immer den
> Zähler faktorisiert um etwas aus dem Nenner kürzen zu
> können. Hier geht das aber nicht. Hilfe?

Die Polstellen sind richtig. Jetzt mußt Du die Funktion [mm]f\left(x\right)[/mm]  nur noch richtig stellen.

Das kürzen geht eben nicht immer.

In diesem Fall sind die Nullstellen des Nenners Pole.

>  
> b) Ich hab mir übnerlegt, dass die Asymptote ja sozusagen
> die gerade auf dem Grenzwer ist. Also Grenzwert für -/+
> Unendlich machen. Aber.. ist das richtig? Wie macht man das
> alles :(?
>  

Ja, das ist richtig. [ok]

[mm]\limes_{x\rightarrow\infty}{\bruch{x^2-5}{4x-12}}=\limes_{x\rightarrow\infty}{\bruch{1}{4}x+\bruch{3}{4}+\bruch{5}{4x-12}}=\bruch{1}{4}x+\bruch{3}{4}[/mm]

Ebenso gilt:

[mm]\limes_{x\rightarrow-\infty}{\bruch{x^2-5}{4x-12}}=\limes_{x\rightarrow\infty}{\bruch{1}{4}x+\bruch{3}{4}+\bruch{5}{4x-12}}=\bruch{1}{4}x+\bruch{3}{4}[/mm]

Die Gerade [mm]\bruch{1}{4}x+\bruch{3}{4}[/mm] nennt man dann eine schiefe Asymptote.

Siehe auch:

Asymptote - Mathebank
[]Aymptote - Wikipedia

> Liebe Grüße
>  

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]