| Polynom=Quadratzahl < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe 
 
 
  |  |  
  | 
    
     | 
 | Aufgabe |  | Für welche natürlichen Zahlen n ist [mm] 2n^2+14n+21 [/mm] eine Quadratzahl? | 
 Hi,
 sei [mm] 2n^2+14n+21=m^2 [/mm] mit m Element IN, dann muss [mm] 2m^2+7 [/mm] eine Quadratzahl sein. Aber das hilft mir nicht wirklich weiter.
 Ich kenne zwar schon ein paar Lösungen, nämlich: n=3,10,34,75,215,454,1270,2663,7419,15538,43258,90579,252143,...
 aber auch dies hilft mir nicht, die Frage der Aufgabenstellung zu beantworten.
 Könnt ihr mir helfen?
 PS: Ich habe diese Frage noch in keinem Forum auf anderen Internetseiten gestellt.
 Liebe Grüße
 Lena
 
 
 |  |  |  | 
 
  |  |  
  | 
    
     |  | Status: | (Antwort) fertig   |   | Datum: | 22:54 Mi 07.09.2011 |   | Autor: | hippias | 
 Ich haette einen Ansatz fuer das Problem, aber ich weiss nicht, ob ihr die Hilfsmittel, die ich anwenden moechte, behandlet habt. Bestimmt ist es etwas kompliziert gemacht:
 Wie Du bereits bemerkt hast ist [mm] $(2n+1)^{2}= 2m^{2}+7$, [/mm] d.h. $7= [mm] (2n+1)^{2}- 2m^{2}$. [/mm] Nun rechne ich im Ring $R:= [mm] \IZ[\sqrt{2}]$.
 [/mm]
 Man prueft recht leicht nach, dass $R$ euklidisch ist, also insbesondere eine eindeutige Zerlegung in Primfaktoren besitzt. Die Primfaktorzerlegung von $7$ ist damit [mm] $(3+\sqrt{2})(3-\sqrt{2})$. [/mm] Für alle weiteren Loesungen muss man nun "nur" noch die Loesungen der Pell'schen Gleichung [mm] $a^{2}-2b^{2}= [/mm] 1$ bestimmen, welche ja in $R$ eine zyklische Gruppe bilden. Speziell hier ist dies [mm] $(3+2\sqrt{2})^{k}, k\in \IN$. [/mm] Daraus lassen sich die moeglichen Werte fuer $n$ und $m$ recht leicht berechnen.
 
 Wenn das zu kompliziert ist, ist mir nur noch der Ansatz [mm] $(n+3)^{2}+ (n+4)^{2}= m^{2}+ 2^{2}$ [/mm] eingefallen, womit ist aber nicht wirklich weitergekommen bin. Vielleicht kannst Du etwas damit anfangen.
 
 
 |  |  | 
 |  | 
 
  |  |  
  | 
    
     |  | Status: | (Mitteilung) Reaktion unnötig   |   | Datum: | 16:46 Do 08.09.2011 |   | Autor: | lena12310 | 
 Danke hippias
   
 
 |  |  | 
 |  | 
 
  |  |  
  | 
    
     |  | Status: | (Mitteilung) Reaktion unnötig   |   | Datum: | 15:22 Sa 10.09.2011 |   | Autor: | matux | 
 $MATUXTEXT(ueberfaellige_frage)
 
 |  |  | 
 
 
 |