matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperPolynom irreduzibel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Polynom irreduzibel
Polynom irreduzibel < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynom irreduzibel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:35 So 04.07.2010
Autor: steppenhahn

Aufgabe
Sei [mm] $f:=X^4+3X^3+X^2-2X+1\in\IZ[X]$ [/mm] ein Polynom.
a) Zerlege [mm] $\overline{f}\in\IF_{2}[X]$ [/mm] in irreduzible Faktoren.
b) Zeige, dass [mm] $\overline{f}\in\IF_{3}[X]$ [/mm] in [mm] \IF_{3} [/mm] keine Nullstellen hat.
c) Folgere: f ist in [mm] \IQ[X] [/mm] irreduzibel.

Hallo!

Mir geht es insbesondere um c), ich würde aber auch gern wissen, ob meine Überlegungen zu a) und b) richtig sind [Wichtig: Wir haben keine Theorie konkret zu Polynomen und deren Irreduzibilität aufgebaut]:

a) Ich habe in [mm] \IF_{2} [/mm] zerlegt: $f = [mm] X^4+X^3+X^2+1 [/mm] = [mm] (X+1)*(X^{3}+X+1)$. [/mm] $(X+1)$ kann nicht weiter zerlegt werden. Könnte [mm] $(X^{3}+X+1)$ [/mm] weiter zerlegt werden, müsste die Zerlegung die Gestalt

[mm] $X^{3}+X+1 [/mm] = [mm] (X+a)*(X^2+bX+x)$ [/mm]

haben. Das würde aber bedeuten, dass [mm] $(X^{3}+X+1)$ [/mm] eine Nullstelle in $-a$ hat. Das Polynom [mm] $(X^{3}+X+1)$ [/mm] hat aber in [mm] \IF_{2} [/mm] keine Nullstellen, Widerspruch.

b) Dass das Polynom $f [mm] =X^4+X^2 [/mm] + X+ 1$ keine Nullstellen in [mm] \IF_{3} [/mm] hat, habe ich nachgerechnet. Wie in a) gezeigt kann ich so folgern, dass zumindest keine Zerlegung von f in irreduzible Faktoren existiert, bei der ein Faktor ein Polynom 1. Grades ist.

c)
Ich habe in den anderen Threads geschaut und gesehen, dass man erstmal zeigt, dass f in [mm] \IZ[X] [/mm] irreduzibel ist. Angenommen, f wäre in [mm] \IZ[X] [/mm] reduzibel, dann ex. entweder eine Zerlegung der Form

$f = [mm] (X+a)*(X^3+bX^2+cX+d)$ [/mm]   (I)

oder der Form

$f = [mm] (X^2+aX+b)*(X^2+bX+c)$ [/mm]   (II).

Nun kann ich den Homomorphismus anwenden, der beide Seiten nach [mm] $\IF_2 \cong \IZ/2\IZ$ [/mm] bzw. [mm] $\IF_3\cong \IZ/3\IZ$ [/mm] befördert, und erhalte bei (I) einen Widerspruch zu b), bei (II) einen Widerspruch zu a).

Frage 1: Ist der Widerspruch bei (II) zu a) offensichtlich? Wie kann ich das genauer begründen?
Frage 2: Wie kann ich ohne "Gauss" nun von [mm] \IZ [/mm] auf [mm] \IQ [/mm] schließen?

Vielen Dank für Eure Hilfe und Grüße,
Stefan

        
Bezug
Polynom irreduzibel: Antwort
Status: (Antwort) fertig Status 
Datum: 03:05 Mo 05.07.2010
Autor: felixf

Moin!

> Sei [mm]f:=X^4+3X^3+X^2-2X+1\in\IZ[X][/mm] ein Polynom.
>  a) Zerlege [mm]\overline{f}\in\IF_{2}[X][/mm] in irreduzible
> Faktoren.
>  b) Zeige, dass [mm]\overline{f}\in\IF_{3}[X][/mm] in [mm]\IF_{3}[/mm] keine
> Nullstellen hat.
>  c) Folgere: f ist in [mm]\IQ[X][/mm] irreduzibel.
>  Hallo!
>  
> Mir geht es insbesondere um c), ich würde aber auch gern
> wissen, ob meine Überlegungen zu a) und b) richtig sind
> [Wichtig: Wir haben keine Theorie konkret zu Polynomen und
> deren Irreduzibilität aufgebaut]:
>  
> a) Ich habe in [mm]\IF_{2}[/mm] zerlegt: [mm]f = X^4+X^3+X^2+1 = (X+1)*(X^{3}+X+1)[/mm].
> [mm](X+1)[/mm] kann nicht weiter zerlegt werden. Könnte [mm](X^{3}+X+1)[/mm]
> weiter zerlegt werden, müsste die Zerlegung die Gestalt
>
> [mm]X^{3}+X+1 = (X+a)*(X^2+bX+x)[/mm]
>  
> haben. Das würde aber bedeuten, dass [mm](X^{3}+X+1)[/mm] eine
> Nullstelle in [mm]-a[/mm] hat. Das Polynom [mm](X^{3}+X+1)[/mm] hat aber in
> [mm]\IF_{2}[/mm] keine Nullstellen, Widerspruch.

[ok]

> b) Dass das Polynom [mm]f =X^4+X^2 + X+ 1[/mm] keine Nullstellen in
> [mm]\IF_{3}[/mm] hat, habe ich nachgerechnet. Wie in a) gezeigt kann
> ich so folgern, dass zumindest keine Zerlegung von f in
> irreduzible Faktoren existiert, bei der ein Faktor ein
> Polynom 1. Grades ist.

[ok]

> c)
>  Ich habe in den anderen Threads geschaut und gesehen, dass
> man erstmal zeigt, dass f in [mm]\IZ[X][/mm] irreduzibel ist.

Genau.

> Angenommen, f wäre in [mm]\IZ[X][/mm] reduzibel, dann ex. entweder
> eine Zerlegung der Form
>  
> [mm]f = (X+a)*(X^3+bX^2+cX+d)[/mm]   (I)
>  
> oder der Form
>  
> [mm]f = (X^2+aX+b)*(X^2+bX+c)[/mm]   (II).
>  
> Nun kann ich den Homomorphismus anwenden, der beide Seiten
> nach [mm]\IF_2 \cong \IZ/2\IZ[/mm] bzw. [mm]\IF_3\cong \IZ/3\IZ[/mm]
> befördert, und erhalte bei (I) einen Widerspruch zu b),
> bei (II) einen Widerspruch zu a).

Genau.

> Frage 1: Ist der Widerspruch bei (II) zu a) offensichtlich?

Nun, wenn du es so zerlegen kannst, dann muss das Polynom modulo 2 in zwei Faktoren von Grad 2 zerfallen (und evtl. noch weiter). Du weisst aber, dass du modulo 2 einen irreduziblen Faktor von Grad 3 hast. Den koennte es aber nicht geben, wenn du das Polynom als Produkt zweier Faktoren von Grad 2 schreiben koenntest.

> Wie kann ich das genauer begründen?
>  Frage 2: Wie kann ich ohne "Gauss" nun von [mm]\IZ[/mm] auf [mm]\IQ[/mm]
> schließen?

Nun, indem du Gauss speziell fuer dieses Polynom beweist ;-)

Schreibe $f = [mm] \frac{1}{\lambda} \cdot [/mm] g [mm] \cdot [/mm] h$ mit [mm] $\lambda \in \Z \setminus \{ 0 \}$, [/mm] $g, h [mm] \in \IZ[x]$ [/mm] mit teilerfremden Koeffizienten. Daraus folgt, dass in [mm] $\IZ[x]$ [/mm] gilt [mm] $\lambda [/mm] f = g h$. Zeige jetzt, dass die Koeffizienten von $g h$ ebenfalls teilerfremd sind, dann muss [mm] $\lambda [/mm] = [mm] \pm [/mm] 1$ sein.

(Gauss besagt gerade, dass die Koeffizienten von $g h$ teilerfremd sind.)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]