matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenPolynomdivision
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Rationale Funktionen" - Polynomdivision
Polynomdivision < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomdivision: Frage eines Dummen
Status: (Frage) beantwortet Status 
Datum: 18:29 Mo 14.03.2005
Autor: HistoMat

Hallo liebe Freunde der Mathematik,

ich hab das mal richtig gekonnt, aber irgendwie ist das wie aus dem Hirn gelöscht. Kann mir evtl. jmd. sagen, wie ich eine korrekte Polynomdivision am Beispiel

f(x) = x³-2x²+1  :  x²-1

ausrechne?!

Dankeschön im Vorfeld,

M.K aus B.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Polynomdivision: Antwort
Status: (Antwort) fertig Status 
Datum: 18:43 Mo 14.03.2005
Autor: Zwerglein

Hi, HistoMat,

erst mal (und das ist wegen der Regel "Punkt vor Strich" wichtig!):
Vergiss die Klammern nicht:

  (x³ - 2x²      + 1)  : ( x²-1)  = x - 2  + [mm] \bruch{x-1}{x^{2}-1} [/mm]
[mm] -(x^{3} [/mm]        - x)
---------------
        [mm] -2x^{2}+x+1 [/mm]
      [mm] -(-2x^{2} [/mm]    +2)
        -------------
             x - 1


Bezug
                
Bezug
Polynomdivision: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:21 Mo 14.03.2005
Autor: HistoMat

Hey, vielen, vielen Dank!
Das ging nicht nur fix, hier sind wenigstens Leute die was davon verstehen. Vor morgen hätte ich garnit mit einer Antwort gerechnet.

Hab ich schon erwähnt, dass ich mich im Abitur in Mathe prüfen lasse? ;-)


mfg.,
Martin aka. Histomat

Bezug
                        
Bezug
Polynomdivision: ANTWORT
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:43 Mo 14.03.2005
Autor: emma

HEy,
ich hoffe dass du die Lösung lesen kannst, weil der Formelditor bei mir irgendwie nicht funktioniert.


Deine Aufgabe ist:

x³-2x²+1  :  x²-1 = [mm] x^2-x+1 [/mm]
[mm] -x^2 [/mm]
----
[mm] -x^2 [/mm] +2

[mm] -(-x^2 [/mm]



Bin mir bei der Lösung aber nicht sicher!!!!!

Bezug
                
Bezug
Polynomdivision: weitere Umformung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:31 Di 15.03.2005
Autor: Loddar

Guten Morgen HistoMat!


Das Ergebnis von Zwerglein habe ich auch erhalten:

[mm] $(x^3 [/mm] - [mm] 2x^2 [/mm] + 1) : [mm] (x^2-1) [/mm] \ = x - 2  + [mm] \bruch{x-1}{x^{2}-1}$ [/mm]


Zur weiteren Vereinfachung kannst Du noch den Bruch umformen
(3. binomische Formel im Nenner:)

$... \ = \ x - 2  + [mm] \bruch{x-1}{(x-1)*(x+1)} [/mm] \ = \ x - 2  + [mm] \bruch{1}{x+1}$ [/mm]


Gruß
Loddar


Bezug
        
Bezug
Polynomdivision: MatheBank
Status: (Antwort) fertig Status 
Datum: 18:55 Mo 14.03.2005
Autor: Loddar

Hallo HistoMat,

auch Dir [willkommenmr] !!

Sieh' doch auch mal in unserer MatheBank unter MBPolynomdivision ...


Grüße
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]