matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperPolynome,Root Locus,Poltrajek.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Polynome,Root Locus,Poltrajek.
Polynome,Root Locus,Poltrajek. < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynome,Root Locus,Poltrajek.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:36 Do 01.12.2011
Autor: qsxqsx

Hallo (seit längerem wiedermal),

Da ich mich zurzeit mit Regelsystemen beschäftige, hab ich ständig mit Polynomen in Übertragungsfunktionen zu tun. Leider ist mein mathematisches wissen über die Eigenschaften von Polynomen höherer Ordnung als 2 relativ beschränkt...
Oftmals ist gegeben eine Übertragungsfunktion G(s) in form einer rationalen Funktion [mm] \bruch{a_{n}*s^{n}+a_{n-1}*s^{n-1}+...+a_{0}}{b_{n}*s^{n}+b_{n-1}*s^{n-1}+...+b_{0}}. [/mm]
Diese wird mit einer Funktion D(s) kompensiert. Nehmen wir mal an D(s) sei nur eine Konstante K. So ist sieht das Feedback folgendermassen aus:
U(s) = [mm] \bruch{K*G(s)}{1 + K*G(s)} [/mm] = [mm] \bruch{K*(a_{n}*s^{n}+a_{n-1}*s^{n-1}+...+a_{0})}{b_{n}*s^{n}+b_{n-1}*s^{n-1}+...+b_{0} + K*(a_{n}*s^{n}+a_{n-1}*s^{n-1}+...+a_{0})}. [/mm]

Für die Pole in anhängigkeit von K löst man nun also:
[mm] b_{n}*s^{n}+b_{n-1}*s^{n-1}+...+b_{0} [/mm] + [mm] K*(a_{n}*s^{n}+a_{n-1}*s^{n-1}+...+a_{0}) [/mm] = 0
Ich kenne das Nyquist-Kriterium usw. Nur frag ich mich, was man genau über diese Pole in Abhängigkeit von K analytisch sagen kann? Wie komplex können diese Trajektorien in Abhängikeit des Grades maximal sein? Plote ich die Trajektorien sehen diese eben leider nicht mehr ähnlich einem Polynom (was mich etwas verwundert, da ja eigentlich eine Polynomgleichung gelöst wird). Mehr so Hyperbel oder Kreisförmig. Schwer zu sagen was für funktionen das sind.
Kann mir jemand vielleicht etwas mehr dazu sagen?

Hier ein Beispiel. Man sieht im Bild oben links eine art Hyperbel, welche die Orte der Nullstellen in Abhängikeit von K beschreibt.
[Dateianhang nicht öffentlich]

Viele Grüsse!

Dateianhänge:
Anhang Nr. 1 (Typ: fig) [nicht öffentlich]
        
Bezug
Polynome,Root Locus,Poltrajek.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Sa 10.12.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]