matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesPolynomfaktorisierung in R
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Polynomfaktorisierung in R
Polynomfaktorisierung in R < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomfaktorisierung in R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:43 So 22.11.2009
Autor: steppenhahn

Aufgabe
Sei [mm] f\in\IR[/mm] [t] ein Polynom, es sei $n = [mm] \deg(f)$ [/mm] der Grad des Polynoms. Zeigen Sie:

Es gibt [mm] $k,l\in\IN_{0}, [/mm] a, [mm] \lambda_{1},...,\lambda_{k},b_{1},c_{1},...,b_{l},c_{l}\in\IR$, [/mm] sodass [mm] $b_{j}^{2} [/mm] < [mm] 4*c_{j}$ [/mm] für $j = 1,...,l$ und

$f = [mm] a*(t-\lambda_{1})*...*(t-\lambda_{k})*(t^{2}+b_{1}*t+c_{1})*...*(t^{2}+b_{l}*t+c_{l})$ [/mm]

Hallo!

Bei der obigen Aufgabe habe ich einige Probleme dahingehend, dass ich mir nicht ganz sicher bin was ich beim Beweis verwenden darf und was nicht.

Ich dachte, ich beweise mit Induktion über den Grad des Polynoms n.

IA:

$n = 0 [mm] \Rightarrow [/mm] f = [mm] a\in\IR$ [/mm] ist ein konstantes Polynom, es existieren als entsprechende [mm] $k,l\in\IN_{0}$ [/mm] mit $k = l = 0$.

[mm]n = 1 \Rightarrow f = a_{1}*t^{1}+a_{0}[/mm] und [mm] $a_{1}\not= [/mm] 0$, dann kann ich schreiben: $f = [mm] a_{1}*\left(t + \frac{a_{0}}{a_{1}}\right)$, [/mm] d.h. es existiert $a = [mm] a_{1}\in\IR$ [/mm] und $k = 1, l= 0$ und [mm] $\lambda_{1} [/mm] = [mm] -\frac{a_{0}}{a_{1}}$, [/mm] sodass die Aussage erfüllt ist.

Nun kommt der Induktionsschritt. Es sei [mm] \deg(f) [/mm] = n, und die Aussage für alle Polynome vom Grad < n schon gezeigt. Ich dachte, ich mache eine Fallunterscheidung:

1. Fall: $f$ hat eine Nullstelle. Dann existiert ein entsprechender Linearfaktor, und das ganze funktioniert wieder (hab ich jetzt etwas abgekürzt).

2. Fall: $f$ hat keine Nullstelle.

Hier weiß ich jetzt nicht genau, wie ich argumentieren soll. Ich muss ja jetzt irgendwie reinbringen, dass f dann einen Faktor der Form [mm] (t^{2}+b_{l}*t+c_{l}) [/mm] beinhaltet, aber darf ich das so einfach behaupten?

Danke für Eure Hilfe,
Grüße,
Stefan



        
Bezug
Polynomfaktorisierung in R: Bitte Fall 1 ausführlicher
Status: (Frage) beantwortet Status 
Datum: 18:55 Mo 23.11.2009
Autor: asiafire

Hallo Stefan,

mich würde interessieren, wie du Fall 1 ausführlicher formuliert hast.

Viele Grüße,
asiafire

Bezug
                
Bezug
Polynomfaktorisierung in R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Mo 23.11.2009
Autor: asiafire

Bitte entschuldige, ich vergaß hinzuzufügen:

Gilt nicht nach dem Fundamentalsatz der Algebra, dass jedes Polynom [mm]f\in\IC[t][/mm] mit [mm]deg(t)\ge1[/mm] eine Nullstelle besitzt?

Bezug
                        
Bezug
Polynomfaktorisierung in R: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Mo 23.11.2009
Autor: steppenhahn

Hallo asiafire,

ja, es gibt den Fundamentalsatz der Algebra. Damit erhalte ich aber nur die Nullstellen in [mm] \IC. [/mm]

Eventuell kann man mit ihm auch was machen, dass sähe dann so aus:

Mit einer kurzen Folgerung vom Fundamentalsatz der Algebra erhält man, dass

>>> jedes Polynom [mm] $f\in\IC[/mm] [t]$ von Grad n in Linearfaktoren zerfällt, d.h.

$f = [mm] a*(t-\lambda_{1})*(t-\lambda_{2})*...*(t-\lambda_{n})$ [/mm]

mit [mm] $a\in\IC$ [/mm] und [mm] $\lambda_{1},...,\lambda_{n}\in\IC$. [/mm]

Da [mm] \IR\subset\IC, [/mm] kann ich nun auch folgern:

>>> Jedes Polynom [mm] $f\in\IR[/mm] [t]$ von Grad n in Linearfaktoren zerfällt, d.h.

$f = [mm] a*(t-\lambda_{1})*(t-\lambda_{2})*...*(t-\lambda_{n})$ [/mm]

mit [mm] $a\in\IC$ [/mm] und [mm] $\lambda_{1},...,\lambda_{n}\in\IC$. [/mm]
(Später müsste sich dann noch herausstellen, dass [mm] a\in\IR [/mm] ist, aber das dürfte nicht das Problem sein).

So, und nun gehen wir die [mm] \lambda_{i} [/mm] schrittweise für [mm] $1\le [/mm] i [mm] \le [/mm] n$ durch und prüfen:

- Ist [mm] \lambda_{i}\in\IR [/mm] ? Wenn ja, dann ist alles gut --> Es entsteht ein entsprechender Faktor entsprechend der Aufgabenstellung.

- Ist [mm] $\lambda_{i}\in\IC\textbackslash\IR$ [/mm] ? Dann ist wegen $t [mm] \in \IR$ [/mm] auch [mm] $(t-\lambda_{i})\in\IC$. [/mm] Nun müsste man zeigen:

Es gibt nur einen Faktor [mm] $(t-\lambda_{i}')$, [/mm] sodass [mm] $(t-\lambda_{i})*(t-\lambda_{i}')\in\IR$ [/mm] ist [mm] (\lambda_{i}'\in\IC). [/mm] Dieser Faktor muss dann logischerweise auch in der Linearfaktorzerlegung auftauchen, weil ja das Polynom f aus [mm] \IR[/mm] [t] nur reelle Werte annehmen darf.

Grüße,
Stefan

Bezug
                
Bezug
Polynomfaktorisierung in R: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Mo 23.11.2009
Autor: steppenhahn

Hallo asiafire,

Fall 1:

Naja, dann kann das Polynom aufgespaltet werden in die Form

[mm] (\lambda [/mm] - NS)*g

(NS = Nullstelle), und g hat Grad < n, also nach Induktionsvoraussetzung eine entsprechende Zerlegung.

Grüße,
Steafn

Bezug
        
Bezug
Polynomfaktorisierung in R: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Mo 23.11.2009
Autor: felixf

Hallo Stefan!

> Sei [mm]f\in\IR[/mm] [t]ein Polynom, es sei [mm]n = \deg(f)[/mm] der Grad des Polynoms. Zeigen Sie:
>  
> Es gibt [mm]k,l\in\IN_{0}, a, \lambda_{1},...,\lambda_{k},b_{1},c_{1},...,b_{l},c_{l}\in\IR[/mm], sodass [mm]b_{j}^{2} < 4*c_{j}[/mm] für [mm]j = 1,...,l[/mm] und
>
> [mm]f = a*(t-\lambda_{1})*...*(t-\lambda_{k})*(t^{2}+b_{1}*t+c_{1})*...*(t^{2}+b_{l}*t+c_{l})[/mm]
>  Hallo!
>  
> Bei der obigen Aufgabe habe ich einige Probleme dahingehend, dass ich mir nicht ganz sicher bin was ich beim Beweis verwenden darf und was nicht.
>  
> Ich dachte, ich beweise mit Induktion über den Grad des Polynoms n.
>  
> IA:
>  
> [mm]n = 0 \Rightarrow f = a\in\IR[/mm] ist ein konstantes Polynom, es existieren als entsprechende [mm]k,l\in\IN_{0}[/mm] mit [mm]k = l = 0[/mm].

Genau.

> [mm]n = 1 \Rightarrow f = a_{1}*t^{1}+a_{0}[/mm] und [mm]a_{1}\not= 0[/mm], dann kann ich schreiben: [mm]f = a_{1}*\left(t + \frac{a_{0}}{a_{1}}\right)[/mm], d.h. es existiert [mm]a = a_{1}\in\IR[/mm] und [mm]k = 1, l= 0[/mm] und [mm]\lambda_{1} = -\frac{a_{0}}{a_{1}}[/mm], sodass die Aussage erfüllt ist.
>  
> Nun kommt der Induktionsschritt. Es sei [mm]\deg(f)[/mm] = n, und die Aussage für alle Polynome vom Grad < n schon gezeigt. Ich dachte, ich mache eine Fallunterscheidung:
>
> 1. Fall: [mm]f[/mm] hat eine Nullstelle. Dann existiert ein entsprechender Linearfaktor, und das ganze funktioniert wieder (hab ich jetzt etwas abgekürzt).

Genau.

> 2. Fall: [mm]f[/mm] hat keine Nullstelle.
>  
> Hier weiß ich jetzt nicht genau, wie ich argumentieren soll. Ich muss ja jetzt irgendwie reinbringen, dass f dann einen Faktor der Form [mm](t^{2}+b_{l}*t+c_{l})[/mm] beinhaltet, aber darf ich das so einfach behaupten?

Nun: benutze den Fundamentalsatz! Nach dem hat $f$ eine Nullstelle $z [mm] \in \IC$ [/mm] (mit $z [mm] \not\in \IR$). [/mm] Betrachte jetzt $(x - z) (x - [mm] \overline{z})$; [/mm] dies ist ein Teiler von $f$ (warum?) und ausmultipliziert ergibt dies... :)

LG Felix


Bezug
                
Bezug
Polynomfaktorisierung in R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:19 Mo 23.11.2009
Autor: steppenhahn

Hallo Felix,

erstmal vielen Dank für deine Antwort und Korrektur!

> > Hier weiß ich jetzt nicht genau, wie ich argumentieren soll. Ich muss ja jetzt irgendwie reinbringen, dass f dann einen Faktor der Form [mm](t^{2}+b_{l}*t+c_{l})[/mm] beinhaltet, aber darf ich das so einfach behaupten?
>  
> Nun: benutze den Fundamentalsatz! Nach dem hat [mm]f[/mm] eine Nullstelle [mm]z \in \IC[/mm] (mit [mm]z \not\in \IR[/mm]). Betrachte jetzt [mm](x - z) (x - \overline{z})[/mm]; dies ist ein Teiler von [mm]f[/mm] (warum?) und ausmultipliziert ergibt dies... :)

Ja, genau bei dieser Begründung hapert's bei mir. Ich würde es bis jetzt so begründen, dass der Faktor [mm] (x-\overline{z}) [/mm] auch in der "Linearfaktorzerlegung" von f enthalten sein muss, weil kein anderer Faktor f wieder reell machen würde (es würden komplexe Koeffizienten entstehen).

Wie kann ich das besser begründen :-) ?

Ausmultipliziert:

[mm] $(x-z)*(x-\overline{z}) [/mm] = [mm] x^{2} [/mm] + [mm] \underbrace{(z + \overline{z})}_{:=b_{l}\in\IR}*x +\underbrace{ z*\overline{z}}_{:=c_{l}\in\IR}$ [/mm]

Aber wie kann ich jetzt noch begründen, dass in diesem Fall [mm] $b_{l}^{2} [/mm] < [mm] 4*c_{l}$ [/mm] ist? (Dass dem so ist, ist mir dahingehend klar, dass damit die Diskriminante von der quadratischen Gleichung Null wird... Aber ist das hier angemessen, wo wir doch in der LA-Vorlesung noch nie etwas von Diskriminante gehört haben?)

Vielen Dank für erneute Hilfe ;-)

Grüße,
Stefan

Bezug
                        
Bezug
Polynomfaktorisierung in R: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 Mo 23.11.2009
Autor: felixf

Hallo Stefan!

> > Nun: benutze den Fundamentalsatz! Nach dem hat [mm]f[/mm] eine
> > Nullstelle [mm]z \in \IC[/mm] (mit [mm]z \not\in \IR[/mm]). Betrachte jetzt
> > [mm](x - z) (x - \overline{z})[/mm]; dies ist ein Teiler von [mm]f[/mm]
> > (warum?) und ausmultipliziert ergibt dies... :)
>  
> Ja, genau bei dieser Begründung hapert's bei mir. Ich
> würde es bis jetzt so begründen, dass der Faktor
> [mm](x-\overline{z})[/mm] auch in der "Linearfaktorzerlegung" von f
> enthalten sein muss, weil kein anderer Faktor f wieder
> reell machen würde (es würden komplexe Koeffizienten
> entstehen).
>  
> Wie kann ich das besser begründen :-) ?

Nun: schreibe $f(x) = [mm] \sum_{i=0}^n a_i x^i$. [/mm] Ist $z$ eine Nullstelle von $f$, so ist [mm] $\overline{z}$ [/mm] eine Nullstelle von [mm] $\sum_{i=0}^n \overline{a_i} x^i$. [/mm] Jetzt musst du benutzen, dass $f [mm] \in \IR[x]$ [/mm] ist.

> Ausmultipliziert:
>  
> [mm](x-z)*(x-\overline{z}) = x^{2} + \underbrace{(z + \overline{z})}_{:=b_{l}\in\IR}*x +\underbrace{ z*\overline{z}}_{:=c_{l}\in\IR}[/mm]
>  
> Aber wie kann ich jetzt noch begründen, dass in diesem
> Fall [mm]b_{l}^{2} < 4*c_{l}[/mm] ist? (Dass dem so ist, ist mir
> dahingehend klar, dass damit die Diskriminante von der
> quadratischen Gleichung Null wird... Aber ist das hier
> angemessen, wo wir doch in der LA-Vorlesung noch nie etwas
> von Diskriminante gehört haben?)

Nun, rechne doch mit der pq-Formel die Nullstellen aus. Wenn [mm] $b_l^2 \ge [/mm] 4 [mm] c_l$ [/mm] ist, dann erhaelst du zwei reelle Nullstellen (die evtl. gleich sind). Aber $(x - z) (x - [mm] \overline{z})$ [/mm] hat keine reellen Nullstellen; damit kann nicht [mm] $b_l^2 \ge [/mm] 4 [mm] c_l$ [/mm] sein.

LG Felix


Bezug
                                
Bezug
Polynomfaktorisierung in R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 Mo 23.11.2009
Autor: steppenhahn

Hallo Felix,

erneuten Dank für deine Antwort!

> Hallo Stefan!
>  
> > > Nun: benutze den Fundamentalsatz! Nach dem hat [mm]f[/mm] eine
> > > Nullstelle [mm]z \in \IC[/mm] (mit [mm]z \not\in \IR[/mm]). Betrachte jetzt
> > > [mm](x - z) (x - \overline{z})[/mm]; dies ist ein Teiler von [mm]f[/mm]
> > > (warum?) und ausmultipliziert ergibt dies... :)
>  >  
> > Ja, genau bei dieser Begründung hapert's bei mir. Ich
> > würde es bis jetzt so begründen, dass der Faktor
> > [mm](x-\overline{z})[/mm] auch in der "Linearfaktorzerlegung" von f
> > enthalten sein muss, weil kein anderer Faktor f wieder
> > reell machen würde (es würden komplexe Koeffizienten
> > entstehen).
>  >  
> > Wie kann ich das besser begründen :-) ?
>  
> Nun: schreibe [mm]f(x) = \sum_{i=0}^n a_i x^i[/mm]. Ist [mm]z[/mm] eine
> Nullstelle von [mm]f[/mm], so ist [mm]\overline{z}[/mm] eine Nullstelle von
> [mm]\sum_{i=0}^n \overline{a_i} x^i[/mm]. Jetzt musst du benutzen,
> dass [mm]f \in \IR[x][/mm] ist.

Warum ist [mm] \overline{z} [/mm] eine Nullstelle von [mm] $\sum_{i=0}^n \overline{a_i} x^i$ [/mm] ?

Weil [mm] $\sum_{i=0}^n \overline{a_i} (\overline{z})^i [/mm] = [mm] \sum_{i=0}^n \overline{a_i} \overline{z^i} [/mm] = [mm] \overline{\sum_{i=0}^n a_i z^i} [/mm] = [mm] \overline{0} [/mm] = 0$,

oder? Also wegen der Rechenregeln für Konjugiert komplexes.
Ich verstehe deinen Tipp aber noch nicht ganz.

Wenn [mm] f\in\IR[x] [/mm] ist, dann ist also insbesonder $f(x) = [mm] \sum_{i=0}^n a_i x^i [/mm] = [mm] \sum_{i=0}^n \overline{a_i} x^i$, [/mm] meinst du das? D.h., dass wenn f Nullstelle z hat, hat f auch Nullstelle [mm] \overline{z} [/mm] ?

Ahhh - ich glaube jetzt hab ich's :-).

> > Ausmultipliziert:
>  >  
> > [mm](x-z)*(x-\overline{z}) = x^{2} + \underbrace{(z + \overline{z})}_{:=b_{l}\in\IR}*x +\underbrace{ z*\overline{z}}_{:=c_{l}\in\IR}[/mm]
>  
> >  

> > Aber wie kann ich jetzt noch begründen, dass in diesem
> > Fall [mm]b_{l}^{2} < 4*c_{l}[/mm] ist? (Dass dem so ist, ist mir
> > dahingehend klar, dass damit die Diskriminante von der
> > quadratischen Gleichung Null wird... Aber ist das hier
> > angemessen, wo wir doch in der LA-Vorlesung noch nie etwas
> > von Diskriminante gehört haben?)
>  
> Nun, rechne doch mit der pq-Formel die Nullstellen aus.
> Wenn [mm]b_l^2 \ge 4 c_l[/mm] ist, dann erhaelst du zwei reelle
> Nullstellen (die evtl. gleich sind). Aber [mm](x - z) (x - \overline{z})[/mm]
> hat keine reellen Nullstellen; damit kann nicht [mm]b_l^2 \ge 4 c_l[/mm]
> sein.
>  
> LG Felix

Okay, das mach' ich so,
das gefällt mir gut :-)

Grüße,
Stefan


Bezug
                                        
Bezug
Polynomfaktorisierung in R: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Mo 23.11.2009
Autor: felixf

Hallo Stefan!

> > > > Nun: benutze den Fundamentalsatz! Nach dem hat [mm]f[/mm] eine
> > > > Nullstelle [mm]z \in \IC[/mm] (mit [mm]z \not\in \IR[/mm]). Betrachte jetzt
> > > > [mm](x - z) (x - \overline{z})[/mm]; dies ist ein Teiler von [mm]f[/mm]
> > > > (warum?) und ausmultipliziert ergibt dies... :)
>  >  >  
> > > Ja, genau bei dieser Begründung hapert's bei mir. Ich
> > > würde es bis jetzt so begründen, dass der Faktor
> > > [mm](x-\overline{z})[/mm] auch in der "Linearfaktorzerlegung" von f
> > > enthalten sein muss, weil kein anderer Faktor f wieder
> > > reell machen würde (es würden komplexe Koeffizienten
> > > entstehen).
>  >  >  
> > > Wie kann ich das besser begründen :-) ?
>  >  
> > Nun: schreibe [mm]f(x) = \sum_{i=0}^n a_i x^i[/mm]. Ist [mm]z[/mm] eine
> > Nullstelle von [mm]f[/mm], so ist [mm]\overline{z}[/mm] eine Nullstelle von
> > [mm]\sum_{i=0}^n \overline{a_i} x^i[/mm]. Jetzt musst du benutzen,
> > dass [mm]f \in \IR[x][/mm] ist.
>  
> Warum ist [mm]\overline{z}[/mm] eine Nullstelle von [mm]\sum_{i=0}^n \overline{a_i} x^i[/mm]
> ?
>
> Weil [mm]\sum_{i=0}^n \overline{a_i} (\overline{z})^i = \sum_{i=0}^n \overline{a_i} \overline{z^i} = \overline{\sum_{i=0}^n a_i z^i} = \overline{0} = 0[/mm],
>  
> oder? Also wegen der Rechenregeln für Konjugiert
> komplexes.

Genau.

>  Ich verstehe deinen Tipp aber noch nicht ganz.
>  
> Wenn [mm]f\in\IR[x][/mm] ist, dann ist also insbesonder [mm]f(x) = \sum_{i=0}^n a_i x^i = \sum_{i=0}^n \overline{a_i} x^i[/mm],
> meinst du das? D.h., dass wenn f Nullstelle z hat, hat f
> auch Nullstelle [mm]\overline{z}[/mm] ?

Genau.

> Ahhh - ich glaube jetzt hab ich's :-).

Gut :)

LG Felix


Bezug
                                                
Bezug
Polynomfaktorisierung in R: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:31 Mo 23.11.2009
Autor: steppenhahn

Hallo Felix,

dann vielen Dank für deine schnelle und gute Hilfe!

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]