matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenPopulationsmatrix/Abitur
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Populationsmatrix/Abitur
Populationsmatrix/Abitur < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Populationsmatrix/Abitur: Tipp, Korrektur, Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:50 Do 08.01.2015
Autor: Tabs2000

Aufgabe
In einem zoologischen Garten wird ein neues Schmetterlingshaus mit 90 Schmetterlingen angelegt. Während seines durchschnittlich ein halbes Jahr währenden Lebens legt ein Schmetterling etwa 105 Eier. Aus 9% der Eier schlüpfen Raupen, von denen sich nach einem halben Jahr 11% weiter zu Schmetterlingen entwickeln.

A)Berechnen Sie die Populationsentwicklung in den nächsten beiden Zeitperioden und begründen Sie, inwiefern es sich um einen zyklischen Prozess handelt.

B)Ändern Sie ihr Modell so, dass ein halbjährlicher Verkauf von Schmetterlingen an andere zoologischen Gärten berücksichtigt wird.

C)Wie viele Schmetterlinge können pro Halbjahr verkauft werden, ohne den Bestand der Population zu gefährden?

Also mein Problem bei der Aufgabe ist erstmal, dass ich nicht genau weiß, welche Reihenfolge die "Kategorien" Ei, Raupe, Schmetterling in meiner aufzustellenden Matrix haben müssen. Ich hab jetzt beim Ei angefangen, obwohl zuerst davon berichtet wird, dass DER SCHMETTERLING Eier legt. Dabei komm ich auf folgende Matrix: [mm] \pmat{ 0 & 0 & 105 \\ 0,09 & 0 & 0\\ 0 & 0,11 & 0 } [/mm]

Der Verteilungsvektor zu Beginn wäre [mm] \vec{v} [/mm] = [mm] \vektor{0 \\ 0 \\ 90} [/mm]

Wie man nun auf die Verteilung in den Folgeperioden kommt, verstehe ich: Man multipliziert die Matrix mit der zu betrachteten Ausgangsverteilung, alternativ [mm] M^{k} [/mm] * v0 = vk

Jetzt bereitet mir (falls meine  Matrix stimmt) b) Kopfzerbrechen.

Ich hab mir überlegt, dass das vllt so sein kann:

M (siehe oben) wird mit einem Vektor [mm] a=\vektor{x1 \\ x2\\ x3} [/mm] multipliziert. Dabei kommt dann das raus:

a1=  [mm] \vektor{105x3 \\ 0,09x1 \\ 0,11x2} [/mm]

Element [mm] a_{31} [/mm] gibt die Verteilung von Schmetterlingen nach einer Periode an. Davon wird jetzt ein Betrag p abgezogen, da ja Schmetterlinge verkauft werden sollen.

Dann hätte man 0,11x2- p da stehen.

Die modifizierte Ü-Matrix wäre dann wie M oben, nur dass Element [mm] b_{32} [/mm] nicht mehr 0,11,sondern 0,11-p wäre.

C hab ich dann so gerechnet. Momentan handelt es sich nicht ganz um einen zyklischen Prozess, da 105 [mm] \* [/mm] 0,09 [mm] \* [/mm] 0,11 = 1,0395 beträgt

1,0395 > 1 -> Die Population wächst momentan.

Unter Berücksichtigung von p erhielte man sowas:

105 [mm] \* [/mm]  0,09 [mm] \* [/mm] (0,11-p) [mm] \ge [/mm] 1

Nach Auflösung kommt da p [mm] \ge [/mm] 0,00418 raus -> 0,418 %

Folglich müsste man 99,582 % behalten, damit die Population nicht sinkt, also das Produkt der Elemente der Matrix unter 1 fällt. Das kann nicht stimmen, weil der Wert viel zu klein ist...

Ich bin für jede Hilfe sehr dankbar :)

Danke im Voraus !







        
Bezug
Populationsmatrix/Abitur: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 Fr 09.01.2015
Autor: chrisno


> ,,,,
>  Also mein Problem bei der Aufgabe ist erstmal, dass ich
> nicht genau weiß, welche Reihenfolge die "Kategorien" Ei,
> Raupe, Schmetterling in meiner aufzustellenden Matrix haben
> müssen. Ich hab jetzt beim Ei angefangen, obwohl zuerst
> davon berichtet wird, dass DER SCHMETTERLING Eier legt.

Das ist in Ordnung. Du kannst frei wählen. Du musst nur aufpassen, dass Du nicht bei der weiteren Rechnung etwas durcheinander bringst.


> Dabei komm ich auf folgende Matrix: [mm]\pmat{ 0 & 0 & 105 \\ 0,09 & 0 & 0\\ 0 & 0,11 & 0 }[/mm]

[ok]

>  
> Der Verteilungsvektor zu Beginn wäre [mm]\vec{v}[/mm] = [mm]\vektor{0 \\ 0 \\ 90}[/mm]

[ok]

>
> Wie man nun auf die Verteilung in den Folgeperioden kommt,
> verstehe ich: Man multipliziert die Matrix mit der zu
> betrachteten Ausgangsverteilung, alternativ [mm]M^{k}[/mm] * v0 =
> vk

[ok]

>  
> Jetzt bereitet mir (falls meine  Matrix stimmt) b)
> Kopfzerbrechen.
>  
> Ich hab mir überlegt, dass das vllt so sein kann:
>  
> M (siehe oben) wird mit einem Vektor [mm]a=\vektor{x1 \\ x2\\ x3}[/mm]
> multipliziert. Dabei kommt dann das raus:
>  
> a1=  [mm]\vektor{105x3 \\ 0,09x1 \\ 0,11x2}[/mm]
>  
> Element [mm]a_{31}[/mm] gibt die Verteilung von Schmetterlingen nach
> einer Periode an. Davon wird jetzt ein Betrag p abgezogen,
> da ja Schmetterlinge verkauft werden sollen.
>  
> Dann hätte man 0,11x2- p da stehen.

[ok]

>  
> Die modifizierte Ü-Matrix wäre dann wie M oben, nur dass
> Element [mm]b_{32}[/mm] nicht mehr 0,11,sondern 0,11-p wäre.

[ok]

>  
> C hab ich dann so gerechnet. Momentan handelt es sich nicht
> ganz um einen zyklischen Prozess, da 105 [mm]\*[/mm] 0,09 [mm]\*[/mm] 0,11 =
> 1,0395 beträgt

Da siehst Du, dass der Ansatz mit der Übergangsmatrix zu aufwendig ist. Das liegt daran, dass in jeder Zeile und Spalte immer nur ein Eintrag ist.

>  
> 1,0395 > 1 -> Die Population wächst momentan.

[ok]

>  
> Unter Berücksichtigung von p erhielte man sowas:
>  
> 105 [mm]\*[/mm]  0,09 [mm]\*[/mm] (0,11-p) [mm]\ge[/mm] 1
>  
> Nach Auflösung kommt da p [mm]\ge[/mm] 0,00418 raus -> 0,418 %

entweder $p [mm] \le [/mm] $ oder an beiden Stellen = anstelle von [mm] $\ge$ [/mm]

>  
> Folglich müsste man 99,582 % behalten, damit die
> Population nicht sinkt, also das Produkt der Elemente der
> Matrix unter 1 fällt. Das kann nicht stimmen, weil der
> Wert viel zu klein ist...

wieso nicht? Das Wachstum ist sehr klein. Ich komme beim Nachrechnen auf den gleichen Wert.



Bezug
                
Bezug
Populationsmatrix/Abitur: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:46 Fr 09.01.2015
Autor: Tabs2000

Danke für die Antwort. Dann bin ich beruhigt :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]