matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Potenzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Potenzen
Potenzen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:01 So 17.08.2008
Autor: zitrone

Hallo,

ich glaube, dass ich jetzt weiß , wie man mit Potenzen rechnen muss.Um auch wirklich sicher zu sein, wollte ich fragen, ob man meine ergebnisse kontrollieren könnte, damit ich es auch wirklich richtig verstanden habe.könnte mir da bitte jemand helfen?

Aufg.:
1)
[mm] \bruch{(ab)^{-2}}{x^{2}y^{-1}} [/mm] * [mm] \bruch{(xy)^{2}}{a^{3}b} [/mm]

[mm] =\bruch{a^{-2}*b^{-2}*x^{2}*y^{2}}{x^{2}*y^{-1}*a^{3}*b} [/mm]

[mm] =\bruch{b^{-1}*y^{1}}{a^{1}} [/mm]

2)
[mm] \bruch{(ax)^{-2}}{(by)^{3}} [/mm] * [mm] \bruch{(abx)^{2}}{y^{-3}} [/mm]

[mm] =\bruch{a^{-2}*x^{-2}*a^{2}*b^{2}*x^{2}}{b^{3}*y^{3}*y^{-3}} [/mm]

[mm] =\bruch{a*x}{y*b^{1}} [/mm]

lg zitrone

        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:13 So 17.08.2008
Autor: angela.h.b.


> Hallo,
>  
> ich glaube, dass ich jetzt weiß , wie man mit Potenzen
> rechnen muss.Um auch wirklich sicher zu sein, wollte ich
> fragen, ob man meine ergebnisse kontrollieren könnte, damit
> ich es auch wirklich richtig verstanden habe.könnte mir da
> bitte jemand helfen?
>  
> Aufg.:
>  1)
>  [mm]\bruch{(ab)^{-2}}{x^{2}y^{-1}}[/mm] * [mm]\bruch{(xy)^{2}}{a^{3}b}[/mm]
>  
> [mm]=\bruch{a^{-2}*b^{-2}*x^{2}*y^{2}}{x^{2}*y^{-1}*a^{3}*b}[/mm]

Hallo,

bis hierher ist's gut.

Jetzt sortieren wir mal:

[mm] ...=\bruch{a^{-2}*b^{-2}*x^{2}*y^{2}}{a^{3}*b*x^{2}*y^{-1}} [/mm]

Nun kannst Du verwenden, daß [mm] \bruch{r^p}{r^q}=r^{p-q} [/mm] ist, Damit erhältst Du

[mm] ...=a^{...}b^{...}x^{...}y^{...}, [/mm]

und der Übersichtlichkeit halber kannst Du dann alles was mit neg. Hochzeahlen ist, unter den Bruch bringen - dann allerdings mit positiver Hochzahl.



>  
> [mm]=\bruch{b^{-1}*y^{1}}{a^{1}}[/mm]
>  
> 2)
>  [mm]\bruch{(ax)^{-2}}{(by)^{3}}[/mm] * [mm]\bruch{(abx)^{2}}{y^{-3}}[/mm]
>
> [mm]=\bruch{a^{-2}*x^{-2}*a^{2}*b^{2}*x^{2}}{b^{3}*y^{3}*y^{-3}}[/mm]

Bis hierher ist's richtig.

Es ist doch [mm] r^p*r^q=r^{p+q}, [/mm]

also ist z.B. [mm] c^{-4}*c^{4}=c^0, [/mm] und [mm] c^0=1 [/mm] - und nicht etwa c.

Gruß v. Angela

>
> [mm]=\bruch{a*x}{y*b^{1}}[/mm]
>  
> lg zitrone


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]