Potenzfunktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 12:38 Sa 19.05.2012 | Autor: | Ultio |
Hallo liebe Matheraumler,
ich habe mal eine Frage:
Ich habe 4 Gleichungen die sich in der Struktur sehr ähneln, einen signifikanten Unterschied haben sie jedoch:
[mm] \lambda^{-1}, \lambda^{n-2}, \lambda^{k-2} [/mm] tauchen auf mit k < n.
Die oben beschriebenen(nicht angegebenen) Gleichungen gelten für [mm] \lambda [/mm] gegen [mm] \infty [/mm] und konvergieren alle gegen 0.
Nun ist meine Frage:
Wie kann ich Aussagen über die Konvergenzgeschwindigkeit machen?
Ich habe es wie folgt versucht:
Ich habe die jeweiligen Terme mit [mm] \lambda [/mm] zueinander in Beziehung gesetzt.
So ergibt sich für [mm] \lambda [/mm] gegen [mm] \infty:
[/mm]
[mm] \bruch{\lambda^{-1}}{\lambda^{n-2}} [/mm] = [mm] \bruch{1}{\lambda^{n-1}} [/mm] strebt für n = 1 gegen 1 und für n [mm] \geq [/mm] 2 gegen 0
d.h. Der Term mit [mm] \lambda^{-1} [/mm] konvergiert ähnlich schnell gegen 0 wie der Term mit [mm] \lambda^{n-2} [/mm] mit n = 1
UND
der Term mit [mm] \lambda^{-1} [/mm] konvergiert schneller gegen 0 als der Term mit [mm] \lambda^{n-2} [/mm] für n [mm] \geq [/mm] 2
[mm] \bruch{\lambda^{-1}}{\lambda^{k-2}} [/mm] = [mm] \bruch{1}{\lambda^{k-1}} [/mm] strebt für k = 1 gegen 1 und für k [mm] \geq [/mm] 2 gegen 0
d.h. der Term mit [mm] \lambda^{-1} [/mm] konvergiert ähnlich schnell gegen 0 wie der Term mit [mm] \lambda^{k-2} [/mm] mit k = 1
UND
der Term mit [mm] \lambda^{-1} [/mm] konvergiert schneller gegen 0 als der Term mit [mm] \lambda^{k-2} [/mm] für k [mm] \geq [/mm] 2
[mm] \bruch{\lambda^{k-2}}{\lambda^{n-2}} [/mm] = [mm] \bruch{1}{\lambda^{n-k}} [/mm] strebt da k < n gegen 0
d.h. der Term mit [mm] \lambda^{k-2} [/mm] konvergiert schneller gegen 0 als der Term mit [mm] \lambda^{n-2}
[/mm]
Insgesamt ergibt sich also:
der Term mit [mm] \lambda^{-1} [/mm] konvergiert am schnellsten gegen 0 UND
der Term mit [mm] \lambda^{k-2} [/mm] konvergiert langsamer als der Term mit [mm] \lambda^{-1} [/mm] allerdings schneller als der Term mit [mm] \lambda^{n-2} [/mm] gegen 0.
Das sieht irgendwie wenig mathematisch fundiert aus. Gibt es eine schönere Lösung wie ich die Potenzfunktionen von [mm] \lambda [/mm] vergleichen kann?
Vielen Dank im Voraus.
Viele Grüße
Felix
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:10 Sa 19.05.2012 | Autor: | Marcel |
Hallo,
> Hallo liebe Matheraumler,
> ich habe mal eine Frage:
> Ich habe 4 Gleichungen die sich in der Struktur sehr
> ähneln, einen signifikanten Unterschied haben sie jedoch:
> [mm]\lambda^{-1}, \lambda^{n-2}, \lambda^{k-2}[/mm] tauchen auf mit
> k < n.
> Die oben beschriebenen(nicht angegebenen) Gleichungen
> gelten für [mm]\lambda[/mm] gegen [mm]\infty[/mm] und konvergieren alle
> gegen 0.
>
> Nun ist meine Frage:
> Wie kann ich Aussagen über die Konvergenzgeschwindigkeit
> machen?
> Ich habe es wie folgt versucht:
> Ich habe die jeweiligen Terme mit [mm]\lambda[/mm] zueinander in
> Beziehung gesetzt.
> So ergibt sich für [mm]\lambda[/mm] gegen [mm]\infty:[/mm]
> [mm]\bruch{\lambda^{-1}}{\lambda^{n-2}}[/mm] =
> [mm]\bruch{1}{\lambda^{n-1}}[/mm] strebt für n = 1 gegen 1 und für
> n [mm]\geq[/mm] 2 gegen 0
>
> d.h. Der Term mit [mm]\lambda^{-1}[/mm] konvergiert ähnlich schnell
> gegen 0 wie der Term mit [mm]\lambda^{n-2}[/mm] mit n = 1
> UND
> der Term mit [mm]\lambda^{-1}[/mm] konvergiert schneller gegen 0
> als der Term mit [mm]\lambda^{n-2}[/mm] für n [mm]\geq[/mm] 2
>
> [mm]\bruch{\lambda^{-1}}{\lambda^{k-2}}[/mm] =
> [mm]\bruch{1}{\lambda^{k-1}}[/mm] strebt für k = 1 gegen 1 und für
> k [mm]\geq[/mm] 2 gegen 0
> d.h. der Term mit [mm]\lambda^{-1}[/mm] konvergiert ähnlich
> schnell gegen 0 wie der Term mit [mm]\lambda^{k-2}[/mm] mit k = 1
> UND
> der Term mit [mm]\lambda^{-1}[/mm] konvergiert schneller gegen 0
> als der Term mit [mm]\lambda^{k-2}[/mm] für k [mm]\geq[/mm] 2
>
> [mm]\bruch{\lambda^{k-2}}{\lambda^{n-2}}[/mm] =
> [mm]\bruch{1}{\lambda^{n-k}}[/mm] strebt da k < n gegen 0
> d.h. der Term mit [mm]\lambda^{k-2}[/mm] konvergiert schneller
> gegen 0 als der Term mit [mm]\lambda^{n-2}[/mm]
>
> Insgesamt ergibt sich also:
> der Term mit [mm]\lambda^{-1}[/mm] konvergiert am schnellsten gegen
> 0 UND
> der Term mit [mm]\lambda^{k-2}[/mm] konvergiert langsamer als der
> Term mit [mm]\lambda^{-1}[/mm] allerdings schneller als der Term mit
> [mm]\lambda^{n-2}[/mm] gegen 0.
>
> Das sieht irgendwie wenig mathematisch fundiert aus. Gibt
> es eine schönere Lösung wie ich die Potenzfunktionen von
> [mm]\lambda[/mm] vergleichen kann?
> Vielen Dank im Voraus.
> Viele Grüße
> Felix
ich hab' nur mal sporadisch gelesen: Aber ist das, was Du machen willst, nicht einfach Inhalt der Landau-Notationen?
Gruß,
Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:20 Mo 21.05.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|