matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesPotenzrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis-Sonstiges" - Potenzrechnung
Potenzrechnung < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:17 So 17.01.2016
Autor: rosenbeet001

Aufgabe
Vereinfache so weit wie möglich.

[mm] (\bruch{1}{x} [/mm] + [mm] x^{-2}) [/mm] * 2x

Hallo:) Ich denke, dass bei meinem Rechenweg etwas falsch gelaufen ist...

= [mm] (\bruch{1}{x} [/mm] + [mm] \bruch{1}{x^{2}}) [/mm] * 2x

= [mm] \bruch{x^{2}+x}{x^{3}} [/mm] * 2x

= [mm] \bruch{x^{2}+x}{2x^{4}} [/mm]

= [mm] \bruch{x^{2}}{2x^{4}} [/mm] + [mm] \bruch{x}{2x^{4}} [/mm]

= [mm] \bruch{1}{2x^{-2}} [/mm] + [mm] \bruch{1}{2x^{-3}} [/mm]

= [mm] 2x^{2} [/mm] + [mm] 2x^{3} [/mm]

        
Bezug
Potenzrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:38 So 17.01.2016
Autor: Jule2

Hi
es ist
[mm] (\bruch{1}{x} [/mm] + [mm] \bruch{1}{x^2})*2x [/mm]

[mm] =(\bruch{x+1}{x^2})*2x [/mm]

[mm] =\bruch{2(x+1)}{x} [/mm]

[mm] =2+\bruch{2}{x} [/mm]

LG

Bezug
                
Bezug
Potenzrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 So 17.01.2016
Autor: rosenbeet001

Aber es gilt doch:

[mm] \bruch{a}{b} [/mm] : [mm] \bruch{c}{d} [/mm] = [mm] \bruch{a*d}{b*c} [/mm]
Ich kann den Rechenweg daher leider nicht nachvollziehen...

Bezug
                        
Bezug
Potenzrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 So 17.01.2016
Autor: Jule2

Hi,
was hat den Bitteschön
[mm] \bruch{a}{b} [/mm] : [mm] \bruch{c}{d} [/mm]
mit deiner Aufgabenstellung zu tun???
LG

Bezug
                                
Bezug
Potenzrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 So 17.01.2016
Autor: rosenbeet001

Tut mir leid. Ich meine natürlich : [mm] \bruch{a}{b} [/mm] + [mm] \bruch{c}{d} [/mm] = [mm] \bruch{a*d+c*b}{b*d} [/mm]

Bezug
                                        
Bezug
Potenzrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 So 17.01.2016
Autor: Jule2

Ja diese Regel gibt es um auf einen gemeinsamen Hauptnenner zu kommen es ist aber nicht die einzige Möglichkeit! Wichtig ist ja nur einen zu finden!!
Also nochmal etwas ausführlicher:

[mm] (\bruch{1}{x}+\bruch{1}{x^2})2x [/mm]

[mm] =(\bruch{x}{x^2}+\bruch{1}{x^2})2x [/mm]    hier habe ich den ersten Bruch mit [mm] \bruch{x}{x} [/mm] multipliziert dies ist natürlich immer möglich da [mm] \bruch{x}{x}=1 [/mm] ist!!

[mm] =(\bruch{x+1}{x^2})2x [/mm]

[mm] =\bruch{2x(x+1)}{x^2} [/mm] nun kann man durch x kürzen

[mm] =\bruch{2(x+1)}{x} [/mm]

[mm] =\bruch{2x+2}{x} [/mm]

[mm] =\bruch{2x}{x}+\bruch{2}{x} [/mm]

=2+ [mm] \bruch{2}{x} [/mm]

LG

Bezug
                                                
Bezug
Potenzrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:32 So 17.01.2016
Autor: rosenbeet001

Ah, super. Jetzt habe ich es verstanden. Vielen Dank!

Eine Frage habe ich jedoch noch: Ist x/x der einzige Bruch, den man beliebig mit einem Bruch oder mehreren Brüchen multiplizieren kann, um den Term zu vereinfachen?

Bezug
                                                        
Bezug
Potenzrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 So 17.01.2016
Autor: Jule2

Nein du kannst natürlich auch [mm] \bruch{x^2}{x^2} [/mm] nehmen oder [mm] \bruch{1-x}{1-x} [/mm] wichtig ist nur das du einen bruch der Form [mm] \bruch{a}{a} [/mm] nimmst wobei du für a alles einsetzen kannst was du möchtest den [mm] \bruch{a}{a} [/mm] ist ja bekanntlich immer 1 und etwas mit 1 zu multiplizieren verändert ja nichts!!

Bezug
                                                                
Bezug
Potenzrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:47 So 17.01.2016
Autor: rosenbeet001

Okay, alles klar! Und diesen Bruch der Form a/a muss ich demnach auch nicht mit jedem Wert oder Bruch der Gleichung multiplizieren, sondern so wie es nützlich ist, da a/a immer 1 ist?

Bezug
                                                                        
Bezug
Potenzrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 So 17.01.2016
Autor: Jule2

Korrekt!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]