matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenPotenzreihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Potenzreihe
Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:00 Fr 21.08.2009
Autor: domerich

bestimme das Konvergenzintervvall der gg. Reihe. Untersuche auch auf Konvergenz für |x|=r

[mm] \bruch{(2x+1)}{1}+\bruch{(2x+1)^2}{4}+\bruch{(2x+1)^3}{7} [/mm] </task>
ich komme hier nicht weiter... mathepower weiß immer alles :)

also zuerst habe ich versucht das als eine Potenzreihe darzustellen

[mm] \sum [/mm] ab n=0 [mm] \bruch{(2x+1)^{n+1}}{2^n+(\bruch{(-1)^n+1}{2})} [/mm]

nun kann man das sicher schlauer darstellen.

anyway ich wollte den Konvergenzradius mit dem Quotientenkriterium errechnen und kam auf folenden term

[mm] \limes_{n\rightarrow\infty} \bruch{-4(-1)^n+2}{(-1)^n+1} [/mm]

nun konnte ich leider nicht geschickt kürzen, weil es vermutlich falsch ist

        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Fr 21.08.2009
Autor: leduart

Hallo
es ist mit den 3 Gliedern nicht klar, wie es wieter geht. der naechste Nenner kann 10 sein oder wie du geraten hast 15 oder noch was phantasievolleres.
nenn erstmal 2x+1=y  und dann kommts wirklich drauf an, was die Reihe ist. bei meiner Version konv. nur fuer [mm] y\le [/mm] 0
Deines ist ja beinahe ne geom. Reihe .
Gruss leduart

Bezug
                
Bezug
Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 Fr 21.08.2009
Autor: domerich

habe die aufgabe noch einmal exakt abgeschrieben wies im buch steht!

siehst du vll meinen fehler?

Bezug
                        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Fr 21.08.2009
Autor: MathePower

Hallo domerich,

> habe die aufgabe noch einmal exakt abgeschrieben wies im
> buch steht!
>  
> siehst du vll meinen fehler?


Siehe dazu diesen Artikel.


Gruss
MathePower

Bezug
        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:25 Fr 21.08.2009
Autor: MathePower

Hallo domerich,

> bestimme das Konvergenzintervvall der gg. Reihe. Untersuche
> auch auf Konvergenz für |x|=r
>  
> [mm]\bruch{(2x+1)}{1}+\bruch{(2x+1)^2}{4}+\bruch{(2x+1)^3}{7}[/mm]


Da hat leduart reicht, dass man nicht weiss wie es weiter geht.

Das einfachste, was hier möglich ist, ist ein linearer Zusammenhang
zwischen n und dem Nenner des n. ten Folgengliedes herzustellen.



>  ich komme hier nicht weiter... mathepower weiß immer
> alles :)


Das ehrt mich sehr.


>  
> also zuerst habe ich versucht das als eine Potenzreihe
> darzustellen
>  
> [mm]\sum[/mm] ab n=0
> [mm]\bruch{(2x+1)^{n+1}}{2^n+(\bruch{(-1)^n+1}{2})}[/mm]
>  
> nun kann man das sicher schlauer darstellen.
>  
> anyway ich wollte den Konvergenzradius mit dem
> Quotientenkriterium errechnen und kam auf folenden term
>  
> [mm]\limes_{n\rightarrow\infty} \bruch{-4(-1)^n+2}{(-1)^n+1}[/mm]
>  
> nun konnte ich leider nicht geschickt kürzen, weil es
> vermutlich falsch ist


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]