Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:00 So 06.12.2009 | Autor: | jboss |
Aufgabe | Bestimmen Sie den Konvergenzradius folgender Potenzreihe:
$$
[mm] \summe_{n=0}^{\infty}(a^n [/mm] + [mm] b^n)z^n [/mm] für 0 < a < b
$$ |
Hallo,
ich bin bisher wie folgt vorgegangen:
$$
[mm] \summe_{n=0}^{\infty}(a^n [/mm] + [mm] b^n)z^n [/mm] = [mm] \summe_{n=0}^{\infty}a^nz^n +\summe_{n=0}^{\infty}b^nz^n
[/mm]
$$
Nun habe ich die Konvergenzradien der beiden Potenzreihen bestimmt.
Exemplarisch für [mm] $\summe_{n=0}^{\infty}a^nz^n$
[/mm]
$$
[mm] |\bruch{a^{n}}{a^{(n+1)}}| [/mm] = [mm] |\bruch{1}{a}| \to \bruch{1}{a} [/mm] = [mm] R_1 [/mm] für n [mm] \to \infty
[/mm]
$$
Analog ergibt sich [mm] $R_2 [/mm] = [mm] \bruch{1}{b} [/mm] für [mm] $\summe_{n=0}^{\infty}b^nz^n$
[/mm]
Nun weiß ich nicht weiter. Was ist der Konvergenzradius der Summe der beiden Reihen. Internetrecherche hat ergeben, dass für zwei Potenzreihen $f(x)$ und $g(x)$ mit Konvergenzradius $R$ gilt, dass $f(x)+g(x)$ wiederum eine Potenzreihe mit Konvergenzradius mindestens $R$ ist.
Wie kann ich das nun hier ausnutzen?
Viele Grüße
Jakob
|
|
|
|
Mittels [mm]\sqrt[n]{a^n + b^n} = b \left( 1 + \left( \frac{a}{b} \right)^n \right)^{\frac{1}{n}}[/mm] folgt wegen 0 < a < b sofort
[mm]b \leq \sqrt[n]{a^n + b^n} \leq b \cdot 2^{\frac{1}{n}}[/mm]
Hieraus kann man den Grenzwert des mittleren Ausdrucks für [mm]n \to \infty[/mm] ablesen. Und den Rest erledigt die Hadamardsche Formel.
|
|
|
|