Potenzreihe in Q_p < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:58 Mo 27.10.2014 | Autor: | evinda |
Hallo!!!!
Ich will die p-adische Entwicklung von [mm] \frac{1}{2} [/mm] in [mm] \mathbb{Q}_p [/mm] finden.
Ich habe folgendes versucht:
[mm] 2x_n \equiv [/mm] 1 [mm] \pmod {p^n} \Rightarrow x_n=\frac{1+p^n}{2}
[/mm]
[mm] x_n=\frac{p^n-1}{2}+1 \Rightarrow x_n=\frac{p-1}{2} \sum_{i=0}^{n-1} p^i [/mm] +1
Kann man davon was über die p-adische Entwicklug von [mm] \frac{1}{2} [/mm] in [mm] \mathbb{Q}_p [/mm] herausfinden?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:02 Di 28.10.2014 | Autor: | abakus |
> Hallo!!!!
>
> Ich will die p-adische Entwicklung von [mm]\frac{1}{2}[/mm] in
> [mm]\mathbb{Q}_p[/mm] finden.
> Ich habe folgendes versucht:
>
> [mm]2x_n \equiv[/mm] 1 [mm]\pmod[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
{ [mm]p^n[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
} [mm]\Rightarrow x_n=\frac{1+p^n}{2}[/mm]
>
> [mm]x_n=\frac{p^n-1}{2}+1 \Rightarrow x_n=\frac{p-1}{2} \sum_{i=0}^{n-1} p^i[/mm]
> +1
>
> Kann man davon was über die p-adische Entwicklug von
> [mm]\frac{1}{2}[/mm] in [mm]\mathbb{Q}_p[/mm] herausfinden?
>
>
>
>
Meinst du das hier?
[mm] http://www.onlinemathe.de/forum/p-adische-Entwicklung-in-Q_p
[/mm]
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 13:01 Di 28.10.2014 | Autor: | evinda |
> > Hallo!!!!
> >
> > Ich will die p-adische Entwicklung von [mm]\frac{1}{2}[/mm] in
> > [mm]\mathbb{Q}_p[/mm] finden.
> > Ich habe folgendes versucht:
> >
> > [mm]2x_n \equiv[/mm] 1 [mm]\pmod[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen
> immer paarweise auftreten, es wurde aber ein Teil ohne
> Entsprechung gefunden (siehe rote Markierung)
>
> { [mm]p^n[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
>
> } [mm]\Rightarrow x_n=\frac{1+p^n}{2}[/mm]
> >
> > [mm]x_n=\frac{p^n-1}{2}+1 \Rightarrow x_n=\frac{p-1}{2} \sum_{i=0}^{n-1} p^i[/mm]
>
> > +1
> >
> > Kann man davon was über die p-adische Entwicklug von
> > [mm]\frac{1}{2}[/mm] in [mm]\mathbb{Q}_p[/mm] herausfinden?
> >
> >
> >
> >
[/mm]
>
Ich habe es korrigiert..
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:20 Do 30.10.2014 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 06:42 Di 04.11.2014 | Autor: | felixf |
Moin!
> Ich will die p-adische Entwicklung von [mm]\frac{1}{2}[/mm] in
> [mm]\mathbb{Q}_p[/mm] finden.
> Ich habe folgendes versucht:
>
> [mm]2x_n \equiv[/mm] 1 [mm]\pmod {p^n} \Rightarrow x_n=\frac{1+p^n}{2}[/mm]
>
> [mm]x_n=\frac{p^n-1}{2}+1 \Rightarrow x_n=\frac{p-1}{2} \sum_{i=0}^{n-1} p^i[/mm]
> +1
>
> Kann man davon was über die p-adische Entwicklug von
> [mm]\frac{1}{2}[/mm] in [mm]\mathbb{Q}_p[/mm] herausfinden?
Oben steht ja [mm] $x_n [/mm] = [mm] \frac{p-1}{2} \sum_{i=0}^{n-1} p^i [/mm] + 1 = [mm] \frac{p+1}{2} [/mm] + [mm] \frac{p-1}{2} [/mm] p + [mm] \frac{p-1}{2} p^2 [/mm] + [mm] \frac{p-1}{2} p^3 [/mm] + [mm] \dots [/mm] + [mm] \frac{p-1}{2} p^{n-1}$.
[/mm]
Da [mm] $x_n \equiv \tfrac{1}{2} \pmod{p^n}$ [/mm] ist, folgt also [mm] $\frac{1}{2} [/mm] = [mm] \frac{p+1}{2} [/mm] + [mm] \frac{p-1}{2} [/mm] p + [mm] \frac{p-1}{2} p^2 [/mm] + [mm] \frac{p-1}{2} p^3 [/mm] + [mm] \dots [/mm] + [mm] \frac{p-1}{2} p^n [/mm] + [mm] \dots$.
[/mm]
LG Felix
|
|
|
|