matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenPotenzreihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Potenzreihen
Potenzreihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihen: funktion darstellen
Status: (Frage) beantwortet Status 
Datum: 11:59 So 01.06.2008
Autor: ahnon

Aufgabe
Welche funktion f(x) wird durch [mm] \summe_{k=1}^{\infty}2^{k}*x^{k} [/mm] dargestellt.

nach der Lösung soll [mm] f(x)=\bruch{2x}{1-2x} [/mm] für |x|<1

Wie ich da draufkommen soll weiß ich leider nicht

kann mir da jem. helfen?
grz joey


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:08 So 01.06.2008
Autor: Karl_Pech

Hallo joey,


Hierbei handelt es sich um die []geometrische Reihe. Beachte [mm]a^kb^k=(ab)^k[/mm] und das der Index der Geo.-Reihe bei [mm]k=0\![/mm] anfängt und nicht bei [mm]k=1\![/mm] wie bei dir. D.h. du mußt zuerst eine Indexverschiebung durchführen.



Grüße
Karl




Bezug
                
Bezug
Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:44 So 01.06.2008
Autor: ahnon

vielen dank habs glaub fast raus.

[mm] \summe_{k=1}^{\infty}(ax)^{k} [/mm] = [mm] \summe_{k=0}^{\infty}(ax)^{k+1} [/mm]

dann dür die geo. Reihe ist q=2x

[mm] \summe_{k=0}^{\infty}aq^{k} [/mm] = [mm] \bruch{-1}{q-1} [/mm] = [mm] \bruch{-1}{2x-1} [/mm]

bin ich auf dem richtigen weg?

stimmt noch nicht ganz mit der lösung überein.
= [mm] \bruch{2x}{2x-1} [/mm]
woher kommt da denn die 2x im zähler?



Bezug
                        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 So 01.06.2008
Autor: Karl_Pech


> vielen dank habs glaub fast raus.
>  
> [mm]\summe_{k=1}^{\infty}(ax)^{k}[/mm] =
> [mm]\summe_{k=0}^{\infty}(ax)^{k+1}[/mm]


[ok]


>  woher kommt da denn die 2x im zähler?


Setze jetzt [mm]y:=ax,a:=2\![/mm] und erinnere dich, daß [mm]r^{s+t}=r^s\cdot{}r^t[/mm] gilt.



Grüße
Karl




Bezug
                        
Bezug
Potenzreihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:27 Mo 02.06.2008
Autor: fred97

In Deiner Aufgabe beginnt die Summation mit k=1    !

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]