matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperPrimideal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Primideal
Primideal < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:00 Di 13.11.2007
Autor: Caroline

Hallo liebe Forumuser, ich habe ein Problem mit folgender Aufgabe:



„Es sei R ein kommutativer Ring mit 1 [mm] \not= [/mm] 0. Zeigen Sie:

a) R ist ein Integritätsbereich genau dann, wenn (0) ein Primideal ist.
b) ist jedes von R verschiedene Ideal in R ein Primideal, so ist R ein Körper.“


Also die a) denk ich hab ich richtig und zwar hab ich da folgendes:

R Integritätsb. <=> R nullteilerfrei <=> für a [mm] \in [/mm] R gibt es kein b [mm] \in [/mm] R [mm] \backslash [/mm] {0} : ab=0 <=> [ ab=0 => a=0 oder b=0 für alle a,b [mm] \in [/mm] R ] <=> (0) Primideal

So ich denke, das müsste stimmen!

Bei der b) hab ich allerdings meine Probleme...

Ich habe, dass alle Ideale Primideale sind, also für alle a [mm] \in [/mm] R : (a) Primideal => Falls bc [mm] \in [/mm] (a) dann b [mm] \in [/mm] (a) oder c [mm] \in [/mm] (a) nun komme ich aber leider nicht weiter, ich muss jetzt irgendwie die Einheiten reinbasteln, also das es für alle a ein d gibt mit ad=1 oder so, nur hab ich keinen Schimmer wie ich aus dieser Vorgabe auf die Einheiten komme...

Ich hoffe ihr könnt mir helfen

Viele liebe Grüße

Caro

        
Bezug
Primideal: Antwort
Status: (Antwort) fertig Status 
Datum: 23:46 Di 13.11.2007
Autor: SEcki


> So ich denke, das müsste stimmen!

Jup.

> Bei der b) hab ich allerdings meine Probleme...

Die sieht leichter aus, als sie für mich ist. Beherztes googlen hat mir aber die Lösung verraten - gut, ich schäme mich ein bisschen :-)

> Ich habe, dass alle Ideale Primideale sind, also für alle a
> [mm]\in[/mm] R : (a) Primideal => Falls bc [mm]\in[/mm] (a) dann b [mm]\in[/mm] (a)
> oder c [mm]\in[/mm] (a) nun komme ich aber leider nicht weiter, ich
> muss jetzt irgendwie die Einheiten reinbasteln, also das es
> für alle a ein d gibt mit ad=1 oder so, nur hab ich keinen
> Schimmer wie ich aus dieser Vorgabe auf die Einheiten
> komme...

Erstmal: jedes Element ist prim, das heisst [m]a^2|a*a\Rightarrow a^2|a[/m]. Jetzt Fallunterschiedung nehmen, wenn a gleich 0 oder ungleich 0 ist.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]