matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriePrimidealzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Primidealzerlegung
Primidealzerlegung < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primidealzerlegung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:38 Di 26.07.2016
Autor: Fry

Hallo zusammen,

sei [mm]K:=\mathbb Q(\sqrt{-39})=\{a+b\sqrt{-39},a,b\in\mathbb Q\}[/mm]
und [mm]O_K=\{\frac{a+b\sqrt{-39}}{2},a,b\in\mathbb Z,a\equiv b mod 2\}[/mm] der zugehörige Ganzheitsring.

Ich möchte
1) die Primidealzerlegung [mm]p_1\cdot p_2\cdot p_3\cdot p_4[/mm] des Ideals [mm](10)[/mm] in [mm]O_K[/mm] bestimmen bzw. nachweisen, dass die Ideale Primideale sind.
2)Die Produkte der 4 Primideale bestimmen.




Meine Überlegungen zu 1):

Da [mm]-39\equiv 1 mod 4[/mm] müsste nach dem Zerlegungsgesetz (siehe http://www.rzuser.uni-heidelberg.de/~hb3/publ/qzk.pdf, S.61, Satz 4.8, bzw. Beweis)

[mm](10)=(2)\cdot (5)=(2,\frac{1+\sqrt{-39}}{2})(2,\frac{1-\sqrt{-39}}{2})(5,\frac{1+\sqrt{-39}}{2})(5,\frac{1-\sqrt{-39}}{2})[/mm] [mm]=:p_1\cdot p_2\cdot p_3\cdot p_4[/mm] sein.

Könnte mir jemand einen Tipp geben, wie ich beweisen kann, dass die Ideale prim sind?



2) Ich habe bereits bewiesen, dass [mm]p_1*p_2=(2)[/mm] und [mm]p_3*p_4=(5)[/mm] und ferner, dass
[mm]p_2*p_4=(\frac{1}{2}(1-\sqrt{-39}))[/mm].
Allerdings habe ich keine Idee, was das Ergebnis von [mm]p_2*p_3[/mm] oder [mm]p_1*p_4[/mm] seien könnte.
Hätte jemand einen Vorschlag?


Viele Grüße
Fry

        
Bezug
Primidealzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Mi 27.07.2016
Autor: hippias

Zur 1. Frage: Ich setze [mm] $\delta= \frac{1+\sqrt{-39}}{2}$. [/mm]

Zeige, dass

1. [mm] $O_{K}= \IZ[\delta]$ [/mm]

2. [mm] $O_{k}= \IZ+p_{i}$ [/mm]

3. [mm] $\IZ\cap p_{i}$ [/mm] ein Primideal von [mm] $\IZ$ [/mm]

gilt.

Wende einen Isomorphiesatz auf [mm] $O_{k}/p_{i}$ [/mm] an.



Bezug
                
Bezug
Primidealzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:44 So 07.08.2016
Autor: Fry

Hey Hippas,

nochmal vielen Dank für deine Antwort! :)

VG
Fry

Bezug
        
Bezug
Primidealzerlegung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mo 01.08.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]