matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriePrimzahl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Primzahl
Primzahl < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primzahl: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:27 Mi 08.11.2006
Autor: chatty

Aufgabe
Sind die folgenden Aussagen richtig? (Beweis oder Gegenbeispiel)
Für a,b >= 1, p prim

a) ist (a,p²)=p => (a²,p²)=p²
b) (a,p²)=p und (b,p²)=p => [mm] (ab,p^4)=p³ [/mm]
c) (a,p²)=p und (b,p²)=p => [mm] (ab,p^4)=p² [/mm]

Hi,
wie gehts euch? Ich hätte zu dieser Aufgabe eine Frage.

Ich habe gedacht, dass ich für a=6 und p=5 einsetze.
Somit bekomme ich:
                      (6,5²)=(6,25)=1
                       (36,25)=1            ist ein Wiederspruch!

Ist das richtig oder geht das Beispiel ganz anders.
Und wenn es richtig ist, sind dann a), b) und c) alle Wiedersprüche?

        Danke für eure Hilfe.


        
Bezug
Primzahl: Antwort
Status: (Antwort) fertig Status 
Datum: 00:19 Do 09.11.2006
Autor: Walde

hi Andrea,

ist weiss nicht genau, was du mit [mm] (a,p^2)=p [/mm] meinst. Meinst du [mm] ggT(a,p^2)=p [/mm]? Also den grössten gemeinsamen Teiler von a und [mm]p^2[/mm]? Dann ist dein Beispiel keines, denn 1 ist keine Primzahl.

Die a) stimmt, würde ich sagen:

Da p prim ist, hat [mm] p^2 [/mm] folglich nur einen einzigen Primfaktor in seiner Zerlegung. Wenn also [mm] p^2 [/mm] und a gemeinsame Teiler haben, ist es höchstens 1,p oder [mm] p^2. [/mm] Es ist p nach Vorraussetzung. a ist also von der Gestalt

[mm] a= n*p , n\in \IN [/mm], also ist

[mm] a^2=n^2*p^2 [/mm]

Wenn man a quadriert können keine neuen Primfaktoren dazukommen, also ist [mm] p^2 [/mm] der ggT von [mm] p^2 [/mm] und [mm] a^2 [/mm]


b) ist falsch:

a=30=2*3*5
b=15=3*5
p=3

ggT(30,9)=3
ggT(15,9)=3
[mm] ggT(30*15,81)=ggT(2*3^2*5^2,3^4)=3^2 [/mm]

c) ist richtig, denke ich, aus ähnlichen Überlegungen wie oben. Bei der Multiplikation können keine neuen PF auftauchen, die nicht bei a oder b schon vorher waren. Der ggT mit [mm] p^2 [/mm] war jeweils p, dann ist [mm] ggT(ab,p^4)=p^2 [/mm]

Ich denke, dann sogar [mm] ggT(ab,p^k)=p^2 [/mm] für    [mm] 2\le k\in\IN [/mm]


L G walde

Bezug
                
Bezug
Primzahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:57 Fr 10.11.2006
Autor: felixf

Hallo Walde,

> ist weiss nicht genau, was du mit [mm](a,p^2)=p[/mm] meinst. Meinst
> du [mm]ggT(a,p^2)=p [/mm]? Also den grössten gemeinsamen Teiler von
> a und [mm]p^2[/mm]?

Genau. Im Amerikanischen wird mit $(a, b)$ meistens der ggT von $a$ und $b$ bezeichnet.

> Dann ist dein Beispiel keines, denn 1 ist keine Primzahl.

Genau.

> Die a) stimmt, würde ich sagen:
>  
> Da p prim ist, hat [mm]p^2[/mm] folglich nur einen einzigen
> Primfaktor in seiner Zerlegung. Wenn also [mm]p^2[/mm] und a
> gemeinsame Teiler haben, ist es höchstens 1,p oder [mm]p^2.[/mm] Es
> ist p nach Vorraussetzung. a ist also von der Gestalt
>
> [mm]a= n*p , n\in \IN [/mm], also ist

mit $(n, p) = 1$

> [mm]a^2=n^2*p^2[/mm]

und wiederum mit [mm] $(n^2, [/mm] p) = 1$.

> Wenn man a quadriert können keine neuen Primfaktoren
> dazukommen, also ist [mm]p^2[/mm] der ggT von [mm]p^2[/mm] und [mm]a^2[/mm]

genau.

> b) ist falsch:
>  
> a=30=2*3*5
> b=15=3*5
> p=3
>  
> ggT(30,9)=3
>  ggT(15,9)=3
>  [mm]ggT(30*15,81)=ggT(2*3^2*5^2,3^4)=3^2[/mm]

genau.

> c) ist richtig, denke ich, aus ähnlichen Überlegungen wie
> oben. Bei der Multiplikation können keine neuen PF
> auftauchen, die nicht bei a oder b schon vorher waren. Der
> ggT mit [mm]p^2[/mm] war jeweils p, dann ist [mm]ggT(ab,p^4)=p^2[/mm]
>  
> Ich denke, dann sogar [mm]ggT(ab,p^k)=p^2[/mm] für    [mm]2\le k\in\IN[/mm]

Genau, das stimmt so auch.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]