matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikProblem mit Grenzwertsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "mathematische Statistik" - Problem mit Grenzwertsatz
Problem mit Grenzwertsatz < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Problem mit Grenzwertsatz: tipp
Status: (Frage) beantwortet Status 
Datum: 12:39 Fr 11.12.2009
Autor: james_kochkessel

Aufgabe
Eine Münze wird 1000 mal geworfen. Wie groß ungefähr ist die Wahrscheinlichkeit, dabei mehr als 520 mal "Kopf" zu erhalten?

Hallo zusammen,
ich hab dabei ein paar probleme:

und zwar hätte ich zuerst einfach mit hilfe vom normalen grenzwertsatz [mm] P(Z_{1000} \ge [/mm] 521) gerechnet, jedoch ist das laut lösung schonmal falsch,

in der lösung wird der grenzwertsatz nach moivre-laplace angewendet, was wenn ich mir die definitionn dazu durchlese auch sinn ergibt, jedoch versteh ich nicht wieso und wie er benutzt wird.

und zwar hätte ich jetzt nicht gewusst was bei [mm] P(a\le [/mm] Zn [mm] \le [/mm] b) das b ist.
in der lösung steht [mm] P(521\le Z_{1000} \le [/mm] 1000)
hier wäre meine erste frage, wieso man hier die 1000 als b setzt

und dann das nächste problem, der satz ist hier definiert als :

[mm] P(a\le [/mm] Zn [mm] \le [/mm] b) [mm] \approx grossesPHI(\bruch{b+0,5-n*p}{\wurzel{n*p(1-p)}}) [/mm] - [mm] grossesPHI(\bruch{a-0,5-n*p}{\wurzel{n*p(1-p)}}) [/mm]

jedoch steht in der lösung nur [mm] \approx [/mm] 1 - [mm] grossesPHI(\bruch{521-0,5-1000*\bruch{1}{2}}{\wurzel{1000*\bruch{1}{2}*\bruch{1}{2}}}) [/mm] = 1-grossesPHI(1,2965..)

ich hätte das nach formel gemacht und wäre im ersten schritt von auf einen wert von über 30 gekommen, wenn ich für b=1000 eingesetzt hätte, daher frage ich mich, wieso das eben so gemacht wurde ?!

        
Bezug
Problem mit Grenzwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:37 Sa 12.12.2009
Autor: luis52

Hallo

>  ich hab dabei ein paar probleme:
>  
> und zwar hätte ich zuerst einfach mit hilfe vom normalen
> grenzwertsatz [mm]P(Z_{1000} \ge[/mm] 521) gerechnet, jedoch ist das
> laut lösung schonmal falsch,

Ist korrekt, steht auch (ungefaehr) so in der Musterloesung.

>  
> in der lösung wird der grenzwertsatz nach moivre-laplace
> angewendet, was wenn ich mir die definitionn dazu durchlese
> auch sinn ergibt, jedoch versteh ich nicht wieso und wie er
> benutzt wird.
>  
> und zwar hätte ich jetzt nicht gewusst was bei [mm]P(a\le[/mm] Zn
> [mm]\le[/mm] b) das b ist.
>  in der lösung steht [mm]P(521\le Z_{1000} \le[/mm] 1000)
>  hier wäre meine erste frage, wieso man hier die 1000 als
> b setzt

1000 Treffer ist die Maximalzahl.

>  
> und dann das nächste problem, der satz ist hier definiert
> als :
>  
> [mm]P(a\le[/mm] Zn [mm]\le[/mm] b) [mm]\approx grossesPHI(\bruch{b+0,5-n*p}{\wurzel{n*p(1-p)}})[/mm]
> - [mm]grossesPHI(\bruch{a-0,5-n*p}{\wurzel{n*p(1-p)}})[/mm]
>
> jedoch steht in der lösung nur [mm]\approx[/mm] 1 -
> [mm]grossesPHI(\bruch{521-0,5-1000*\bruch{1}{2}}{\wurzel{1000*\bruch{1}{2}*\bruch{1}{2}}})[/mm]
> = 1-grossesPHI(1,2965..)

[mm] \begin{matrix} P(521\le Z_{1000}) &=&1-P(Z_{1000}\le 520) \\ &\approx&1-\Phi\left(\dfrac{520+0.5-np}{\sqrt{npq}}\right) \\ &=&1-\Phi\left(\dfrac{520.5-500}{\sqrt{250.0000}}\right) \\ &=&1-\Phi\left(\dfrac{20.5}{15.8114}\right) \\ &=&1-\Phi\left(1.2965\right) \\ &=&1-0.9026 \\ &=&0.0974 \end{matrix} [/mm]    



>  
> ich hätte das nach formel gemacht und wäre im ersten
> schritt von auf einen wert von über 30 gekommen, wenn ich
> für b=1000 eingesetzt hätte, daher frage ich mich, wieso
> das eben so gemacht wurde ?!

Hier weiss ich nicht, was du meinst.

vg Luis

PS: Ist die Hochstelltaste deiner Tastatur kaputt?

Bezug
                
Bezug
Problem mit Grenzwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:11 Sa 12.12.2009
Autor: james_kochkessel

Hey, danke erstmal für deine Hilfe. Und nein, meine Hochstelltaste ist nicht kaputt^^.

Also mit dem, was du nicht verstehst, mein ich einfach das, dass ich die Werte b=1000 und a=521 in die von mir genannte Definition des Moivre-Laplace Grenzwertsatzes eingesetzt hätte, also [mm] \Phi(\bruch{1000+0,5-1000\cdot{}\bruch{1}{2}}{\wurzel{1000\cdot{}\bruch{1}{2}\cdot{}\bruch{1}{2}}}) [/mm] - [mm] \Phi(\bruch{521-0,5-1000\cdot{}\bruch{1}{2}}{\wurzel{1000\cdot{}\bruch{1}{2}\cdot{}\bruch{1}{2}}}) [/mm]

Zumindest erschien es mir so am logischsten, allerdings kommt für den ersten Teil der Gleichung dann was mit [mm] \approx [/mm] 30 raus. Jedoch wird in der Lösung auf jeglichen Zwischenschritt verzichtet, bis auf folgenden:


[mm] \approx [/mm] 1- [mm] \Phi (\bruch{521-0,5-1000\cdot{}\bruch{1}{2}}{\wurzel{1000\cdot{}\bruch{1}{2}\cdot{}\bruch{1}{2}}}) [/mm]

Und da hab ich dann halt keine Ahnung mehr gehabt, wieso auf einmal so herum.

Bezug
                        
Bezug
Problem mit Grenzwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Sa 12.12.2009
Autor: luis52


> Hey, danke erstmal für deine Hilfe. Und nein, meine
> Hochstelltaste ist nicht kaputt^^.

Brav! ;-)

>  
> Also mit dem, was du nicht verstehst, mein ich einfach das,
> dass ich die Werte b=1000 und a=521 in die von mir genannte
> Definition des Moivre-Laplace Grenzwertsatzes eingesetzt
> hätte, also
> [mm]\Phi(\bruch{1000+0,5-1000\cdot{}\bruch{1}{2}}{\wurzel{1000\cdot{}\bruch{1}{2}\cdot{}\bruch{1}{2}}})[/mm]
> -
> [mm]\Phi(\bruch{521-0,5-1000\cdot{}\bruch{1}{2}}{\wurzel{1000\cdot{}\bruch{1}{2}\cdot{}\bruch{1}{2}}})[/mm]


Wie gesagt, 1000 ist der groesste Wert von [mm] $Z_{1000}$, [/mm] und so ist
[mm] $P(521\le Z_{1000}\le1000)$ [/mm] zu bestimmen.    

>  
> Zumindest erschien es mir so am logischsten, allerdings
> kommt für den ersten Teil der Gleichung dann was mit
> [mm]\approx[/mm] 30 raus. Jedoch wird in der Lösung auf jeglichen
> Zwischenschritt verzichtet, bis auf folgenden:
>  
>
> [mm]\approx[/mm] 1- [mm]\Phi (\bruch{521-0,5-1000\cdot{}\bruch{1}{2}}{\wurzel{1000\cdot{}\bruch{1}{2}\cdot{}\bruch{1}{2}}})[/mm]
>

[mm] $\Phi(30)\approx1$ [/mm] ...

vg Luis

Bezug
                                
Bezug
Problem mit Grenzwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:30 Sa 12.12.2009
Autor: james_kochkessel

Achso, ja vielen dank. Wir haben halt leider nur eine Tabelle bekommen, die von 0,0 bis 2,99 geht ....

Wäre es also legitim, wenn ich bei Werten >3 davon ausgehe, das es sich um 1 handelt bzw 100% ?

Bezug
                                        
Bezug
Problem mit Grenzwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 Sa 12.12.2009
Autor: luis52


>  
> Wäre es also legitim, wenn ich bei Werten >3 davon
> ausgehe, das es sich um 1 handelt bzw 100% ?


Ja.

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]