matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreProblem mit Vereinigung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mengenlehre" - Problem mit Vereinigung
Problem mit Vereinigung < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Problem mit Vereinigung: richtige Anwendung?
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:30 So 17.06.2012
Autor: bandchef

Ich hab hier diesen Ausdruck rausbekommen:

[mm] $\{a\}^\star \cdot \{b\}^\star [/mm] = [mm] \{ a^i \cdot b^j | i,j \in \mathbb N_0 \}$ [/mm]

[mm] $\Leftrightarrow \bigcup_{i \in \mathbb N_0} a^i \cdot \bigcup_{j \in \mathbb N_0} b^j [/mm] = [mm] \{ a^i \cdot b^j | i,j \in \mathbb N_0 \}$ [/mm]

[mm] $\Leftrightarrow \bigcup_{i,j \in \mathbb N_0} \left( a^i \cdot b^j \right) [/mm] = [mm] \{ a^i \cdot b^j | i,j \in \mathbb N_0 \}$ [/mm]


Erstens: Darf man das so?

Zweitens: Wie geht's hier nun weiter, um die Gleichheit der beiden Seiten festzustellen? Der Malpunkt ist übrigens die Mengen-Konkatenation und das Sternchen die Kleene'sche-Hülle! PS: Die zweite Zeile kommt von meiner Lösung und ist so definitiv richtig!

Ich hoff ihr könnt mir weiterhelfen! Danke!

        
Bezug
Problem mit Vereinigung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 So 17.06.2012
Autor: leduart

Hallo
so allgemein ist das sicher sinnlos.
was ist denn {a}? normalerweise die menge, die aus dem element a besteht, dann müsste man noch wissen was a ist. eine reelle zahl, ein dreieck, eine kuh?
2. kann man vielleicht eine Multiplikation zwischen Mengen definieren, so wie das in der ersten zeile steht ist das aber sehr eigenartig sollen die i,j Hochzahlen sein oder indices?, Hochzahlen machen für mich keinen sinn, Indices höchstens, falls {a} ein Symbol für [mm] {a_i|i\in \IN_0} [/mm]
dann ist aber die zweite Zeile dasselbe wie die erste.
Kannst du den Zusammenhang sagen, aus dem diese Multiplikation von mengen kommt?
gruss leduart


Bezug
                
Bezug
Problem mit Vereinigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:36 Mo 18.06.2012
Autor: bandchef

Oh, Entschuldige bitte! Ich hab wirklich vergessen zu schreiben, dass es sich hier um Sprachen handelt von denen ich die Gleichheit beweisen soll. Ich hab die Aufgabe aber mittlerweile gelöst:

[mm] $\{a\}^\star \cdot \{b\}^\star [/mm] = [mm] \{a^i \cdot b^j | i,j \in \mathbb N_0\} [/mm]

[mm] \Leftrightarrow \bigcup_{i \in \mathbb N_0}\left( \{a\}^i \right) \cdot \bigcup_{i \in \mathbb N_0}\left( \{b\}^j \right) [/mm] = [mm] \{a^i \cdot b^j | i,j \in \mathbb N_0\} [/mm]

[mm] \Leftrightarrow \{a^i | i \in \mathbb N_0\} \cdot \{b^j | j \in \mathbb N_0\} [/mm] = [mm] \{a^i \cdot b^j | i,j \in \mathbb N_0\} [/mm]

[mm] \Leftrightarrow \{a^i \cdot b^j | i,j \in \mathbb N_0\} \cdot \{a^i \cdot b^j | i,j \in \mathbb N_0\}$ [/mm]




Ich hätt zum gleichen Aufgabentyp aber noch eine Aufgabe, von der ich leider auch nicht weiß, ob das so passt:

[mm] $\left( \{ a \}^\star \cdot \{b\}^\star \right)^\star [/mm] = [mm] \left( \{a,b\}^2 \right)^\star [/mm]

[mm] \Leftrightarrow \bigcup_{k \in \mathbb N_0} \left( \left\{ \bigcup_{i \in \mathbb N_0} \left( \{a\}^i \right) \cdot \bigcup_{j \in \mathbb N_0} \left( \{b\}^j\right) \right\}^k \right) [/mm] = [mm] \bigcup_{l \in \mathbb N} \left( \left\{\{a,b\}^2\right\}^l \right) [/mm]

[mm] \Leftrightarrow \bigcup_{k \in \mathbb N_0} \left( \left\{ \{ a^i \cdot b^j | i,j \in \mathbb N_0\} \right\}^k \right) [/mm] = [mm] \left\{ \left\{ \left\{ a,b \right\}^2 \right\}^l |l \in \mathbb N_0 \right\} [/mm]

[mm] \Leftrightarrow \left\{\{ a^i \cdot b^j \}^k| i,j,k \in \mathbb N_0\right\} [/mm] = [mm] \left\{ \left\{ a,b \right\}^{2l} |l \in \mathbb N_0 \right\}$ [/mm]



Bitte gib mir auch bescheid, wenn du mir nicht helfen kannst! Danke :-)

Bezug
                        
Bezug
Problem mit Vereinigung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Mo 18.06.2012
Autor: felixf

Moin!

> Oh, Entschuldige bitte! Ich hab wirklich vergessen zu
> schreiben, dass es sich hier um Sprachen handelt von denen

In dem Fall gehoert die Diskussion in's Forum ueber formale Sprachen in der Informatik.

> Ich hätt zum gleichen Aufgabentyp aber noch eine Aufgabe,
> von der ich leider auch nicht weiß, ob das so passt:
>  
> [mm]$\left( \{ a \}^\star \cdot \{b\}^\star \right)^\star[/mm] =
> [mm]\left( \{a,b\}^2 \right)^\star[/mm]

Das stimmt so nicht. In der rechten Sprache hat jedes Wort die Laenge $2 k$ fuer ein $k [mm] \in \IN_0$. [/mm] In der linken Sprache gibt's auch Woerter ungerader Laenge.

LG Felix


Bezug
                                
Bezug
Problem mit Vereinigung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:07 Mo 18.06.2012
Autor: bandchef

Ok. Das stimmt also so nicht. Wie schreib ich das dann formal auf? Kannst du mir da ein bisschen helfen?

Bezug
                                        
Bezug
Problem mit Vereinigung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mi 20.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]