matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheoriePullback von Differentialform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - Pullback von Differentialform
Pullback von Differentialform < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pullback von Differentialform: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:32 Mi 23.01.2013
Autor: kullinarisch

Aufgabe
Gegeben:

- Katenoid [mm] K=\{(x,y,z)\in\IR^3| x^2+y^2=cosh^2(z)\} [/mm] 2-dimensionale Untermannigfaltigkeit

- [mm] \Psi: \IR^2 \to [/mm] K, [mm] \Psi(u,v)=(cosh(u)cos(v),cosh(u)sin(v),u) [/mm] eine lokale Parametrisierung von K

(a) Berechne die Volumenform [mm] \omega_K [/mm] auf K

(b) Berechne [mm] \Psi^\*(f\omega_K), [/mm] wobei f: [mm] K\to \IR, f(x,y)=\bruch{1}{x^2+y^2} [/mm]

Hallo hallo!

Also zur (a):

allgemeine Formel: zu einer Karte (U, [mm] \phi=(\phi_1,...,\phi_n) [/mm] einer Untermannigfaltigkeit M der Dimension n, ist [mm] \omega_M=\operatorname{sgn}(\phi)\wurzel{G(\bruch{\partial}{\partial x_1},...,\bruch{\partial}{\partial x_n}}d\phi_1\wedge...\wedge d\phi_n [/mm] mit [mm] \bruch{\partial}{\partial x_i}=\bruch{\partial}{\partial x_i}\phi^{-1}(\phi(x)) [/mm] die Volumenform gegeben.




Mein Ergebnis dazu ist:

[mm] \omega_K=\wurzel{2(cosh(u)^2+sinh(u)^2)cosh(u)^2}du\wedge [/mm] dv


Das habe ich mithilfe der Parametrisierung [mm] \phi [/mm] gemacht, die lokal ja die Umkehrfunktion einer Karte ist und mir eine Basis eines Tangentialraumes liefert.

Das Vorzeichen [mm] \operatorname{sgn}(\phi) [/mm] habe ich jetzt allerdings noch nicht berechnet, es kann daher auch sein das dort ein Minus davor muss. Ich hatte in einem anderen Artikel schon mal eine Orientierung des Katenoids berechnet, mit deren Hilfe ich das Vorzeichen bestimmen könnte. War mir aber zu viel Arbeit..
Der Rest sollte aber stimmen oder? Ist natürlich jetzt auch blöd das extra nachzurechnen. Es geht mir auch mehr um den Teil (b).

(b) Für was steht diese Notation [mm] \Psi^\*(f\omega_K)? [/mm] Wäre da nicht dieses f noch in der Klammer, dann wäre damit der Pullback der Volumenform [mm] \omega_K [/mm] via [mm] \psi [/mm] gemeint, was kein Problem darstellt. Was aber soll dieses f noch? Kennt jmd diese Notation? In der Vorlesung ist die in dieser Form noch nicht aufgetaucht.

Grüße, kulli

        
Bezug
Pullback von Differentialform: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 Di 05.02.2013
Autor: MathePower

Hallo kullinarisch,

> Gegeben:
>  
> - Katenoid [mm]K=\{(x,y,z)\in\IR^3| x^2+y^2=cosh^2(z)\}[/mm]
> 2-dimensionale Untermannigfaltigkeit
>  
> - [mm]\Psi: \IR^2 \to[/mm] K,
> [mm]\Psi(u,v)=(cosh(u)cos(v),cosh(u)sin(v),u)[/mm] eine lokale
> Parametrisierung von K
>  
> (a) Berechne die Volumenform [mm]\omega_K[/mm] auf K
>  
> (b) Berechne [mm]\Psi^\*(f\omega_K),[/mm] wobei f: [mm]K\to \IR, f(x,y)=\bruch{1}{x^2+y^2}[/mm]
>  
> Hallo hallo!
>  
> Also zur (a):
>  
> allgemeine Formel: zu einer Karte (U,
> [mm]\phi=(\phi_1,...,\phi_n)[/mm] einer Untermannigfaltigkeit M der
> Dimension n, ist
> [mm]\omega_M=\operatorname{sgn}(\phi)\wurzel{G(\bruch{\partial}{\partial x_1},...,\bruch{\partial}{\partial x_n}}d\phi_1\wedge...\wedge d\phi_n[/mm]
> mit [mm]\bruch{\partial}{\partial x_i}=\bruch{\partial}{\partial x_i}\phi^{-1}(\phi(x))[/mm]
> die Volumenform gegeben.
>  
>
>
>
> Mein Ergebnis dazu ist:
>  
> [mm]\omega_K=\wurzel{2(cosh(u)^2+sinh(u)^2)cosh(u)^2}du\wedge[/mm]
> dv
>  


Poste dazu Deine Rechenschritte.


>
> Das habe ich mithilfe der Parametrisierung [mm]\phi[/mm] gemacht,
> die lokal ja die Umkehrfunktion einer Karte ist und mir
> eine Basis eines Tangentialraumes liefert.
>
> Das Vorzeichen [mm]\operatorname{sgn}(\phi)[/mm] habe ich jetzt
> allerdings noch nicht berechnet, es kann daher auch sein
> das dort ein Minus davor muss. Ich hatte in einem anderen
> Artikel schon mal eine Orientierung des Katenoids
> berechnet, mit deren Hilfe ich das Vorzeichen bestimmen
> könnte. War mir aber zu viel Arbeit..
>  Der Rest sollte aber stimmen oder? Ist natürlich jetzt
> auch blöd das extra nachzurechnen. Es geht mir auch mehr
> um den Teil (b).
>  
> (b) Für was steht diese Notation [mm]\Psi^\*(f\omega_K)?[/mm] Wäre
> da nicht dieses f noch in der Klammer, dann wäre damit der
> Pullback der Volumenform [mm]\omega_K[/mm] via [mm]\psi[/mm] gemeint, was
> kein Problem darstellt. Was aber soll dieses f noch? Kennt
> jmd diese Notation? In der Vorlesung ist die in dieser Form
> noch nicht aufgetaucht.
>  


Möglicherweise ist so was gemeint:

[mm]f\left(x,y\right) \ dx \wedge dy[/mm]


> Grüße, kulli



Gruss
MathePower

Bezug
        
Bezug
Pullback von Differentialform: Antwort
Status: (Antwort) fertig Status 
Datum: 00:20 Do 07.02.2013
Autor: SEcki


> (b) Für was steht diese Notation [mm]\Psi^\*(f\omega_K)?[/mm]

Multipilkation! Das ist die Form die entsteht, in dem an jedem Punkt [m]\omega_K[/m] mit f multipliziert. Anders ist es auch das Dachprodukt der 0-Form f, also [m]f\wedge \omega_K[/m]. Das kann dann beim Berechnen wirklich helfen :-).

Zu deiner a): sicher, dass es so gewollt/gewünscht ist? Dein Ergebnis sieht ja eher wie das Pullback auf die Parametrisierung aus. Ich hätte jetzt das ganze spontan im [m]\IR^3[/m] erwartet, was auch eher deiner Formel entspräche.

SEcki



Bezug
                
Bezug
Pullback von Differentialform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:43 Sa 09.02.2013
Autor: kullinarisch


> (b) Für was steht diese Notation [mm]\Psi^\*(f\omega_K)?[/mm]
>  
> Multipilkation! Das ist die Form die entsteht, in dem an
> jedem Punkt [m]\omega_K[/m] mit f multipliziert. Anders ist es
> auch das Dachprodukt der 0-Form f, also [m]f\wedge \omega_K[/m].
> Das kann dann beim Berechnen wirklich helfen :-).
>  
> Zu deiner a): sicher, dass es so gewollt/gewünscht ist?
> Dein Ergebnis sieht ja eher wie das Pullback auf die
> Parametrisierung aus. Ich hätte jetzt das ganze spontan im
> [m]\IR^3[/m] erwartet, was auch eher deiner Formel entspräche.
>  
> SEcki
>  
>  

Hi! Hatte sich zwar schon geklärt, aber danke!

Zur Volumenform: Das ist nur eine lokale Darstellung bezüglich der lokalen Parametrisierung [mm] \Psi [/mm]

Die globale Form bekommt man z.B. mit [mm] Grad(F)\neg dx\wedge dy\wedge dz=2xdy\wedge dz-2ydx\wedgedz+2cosh(u)sinh(u)dx\wedge [/mm] dy (inneres Produkt)
und [mm] F(x,y,z)=x^2+y^2-cosh(z)^2 [/mm]


Und ich habe nochmal nachgerechnet und ich glaube ich habe mich verrechnet. Richtig ist:

[mm] \omega_K=\wurzel{sinh(u)^2+1}cosh(u)du\wedge [/mm] dv vielleicht ist es aber auch nur eine Umformung..

Dann ist

[mm] \Psi^\*(f\omega_K)=\Psi^\*(f)\Psi^\*(\omega_K)=du\wedge [/mm] dv kürzt sich alles weg, wenn man richtig umformt


Grüße, kulli

Bezug
        
Bezug
Pullback von Differentialform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Do 07.02.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]