matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungPunkt - Gerade 
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Punkt - Gerade
Punkt - Gerade < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkt - Gerade : Frage
Status: (Frage) beantwortet Status 
Datum: 10:31 Fr 29.04.2005
Autor: ChSc

Ich suche den Punkt einer Gerade der die geringste Entfernung zu einem anderen Punkt hat.

In dem Beispiel gehts darum dass man die Gerade der Diagolane der Basisfläche einer quadratischen Pyramide und die Spitze davon gegeben hat, und man den Mittelpunkt der Basisfläche mal ausrechnen soll.

Ich hab das etwas kompliziert gerechnet, ich hab mit HNF Formel den Abstand vom Punkt zur Gerade ausgerechnet. Dann ne Kugel um die Spitze gemacht mit dem Abstand als Radius, und diese dann mit der Gerade geschnitten.
Allerdings geht bei dieser Methode immer ziehmlich viel Zeit verloren, die ich beim Abitur nächste Woche nicht habe. Ich bin eigentlich davon überzeugt das es auch eine einfachere schnellere Methode gibt, die ich allerdings noch nicht kenne.

Also bitte helft mir :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Punkt - Gerade : mögliche antwort?!
Status: (Antwort) fertig Status 
Datum: 12:03 Fr 29.04.2005
Autor: molekular

hallo chcs [willkommenmr]

> Ich suche den Punkt einer Gerade der die geringste
> Entfernung zu einem anderen Punkt hat.

ich glaube die schnellste möglichkeit das herauszufinden erfolgt mit hilfe des skalarprodukts.

nehmen wir an:

[mm]g: \vec x=\begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}+t\begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix}[/mm]

[mm]P(c_x/c_y/c_z)[/mm]

dann benötigen wir zuerst den fußlotpunkt F auf g

[mm]F(a_x+tb_x/a_y+tb_y/a_z+tb_z)[/mm]

wenn das skalarprodukt deines richtungsvektors [mm] \vec{b} [/mm] der geraden mit dem vektor [mm] \vec{PF} [/mm] =0 ergibt, dann ist der abstand minimal.

[mm]--> b_x(a_x+tb_x-c_x)+b_y(a_y+tb_y-c_y)+b_z(a_z+tb_z-c_z)=0[/mm]

nach t auflösen, in g einsetzen und du hast den punkt auf g mit minimalen abstand zu P.

hoffe dir weitergeholfen haben zu können

mfg molek


Bezug
        
Bezug
Punkt - Gerade : Einfache Rechnung
Status: (Antwort) fertig Status 
Datum: 12:10 Fr 29.04.2005
Autor: Deuterinomium

Hallo!

Wenn ich dich richtig verstanden habe geht es darum den kürzesten Abstand von einem Punkt zu einer Gerade auszurechnen!

Wenn dem so ist solltest du folgende Methode ausprobieren!

Lege eine Ebene durch den Punkt (Spitze der Pyramide) und die Gerade (Diagonale der Basisfläche), die senkrecht zur Geraden steht und die du folgendermaßen aufspannst:

Du benutzt die Normalform einer Ebene und nimmst dabei den Richtungsvektor der Geraden als Normalenvektor. Jetzt fehlt dir noch ein Punkt in der Ebene: du nimmst den gegebenen Punkt (Pyramidenspitze).

Jetzt kannst du die Ebene mit der Geraden schneiden und erhälst den Fußpunkt des Punktes (Pyramidenspitze) auf der Geraden. Für den Fußpunkt wäre hier Schluß, sonst mußt du nur noch die beiden "Punkte subtrahieren" und den Betrag des entstandenen Vektors errechnen!

Ich hoffe ich habs richtig verstanden und konnte dir helfen!

Bezug
        
Bezug
Punkt - Gerade : DANKEEE
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:21 Fr 29.04.2005
Autor: ChSc

Danke^^ genau das hab ich gemeint
Oh mann wieso bin ich da nciht gleich draufgekommen.
Ich hab gestern noch bis 1 uhr rumgerätselt udn 3 Leute gefragt, und heute bekomm ich hier schon nach 2 stunden die Lösung :)

Beide Methoden sind super :) zur ersten hab ich noch eine frage, wieso -c, ich dachte eigentlich das ich beim skalarenprodukt immer die einzelnen Teile des Vektors mit einander multipliziere

Bezug
                
Bezug
Punkt - Gerade : Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:27 Fr 29.04.2005
Autor: Max

Hallo,

das [mm] $-c_i$ [/mm] kommt daher, dass man das Skalarprodukt des Differenzvektors von $F$ nach $P$ bestimmt. Daher gilt:

[mm] $\overrightarrow{PF}=\vektor{a_x+tb_x\\a_y+tb_y\\a_z+tb_z}-\vektor{c_x\\c_y\\c_z}=\vektor{a_x+tb_x-c_x\\a_y+tb_y-c_y\\a_z+tb_z-c_z}$ [/mm]

Wegen [mm] $\vec{b} \bullet \overrightarrow{PF}=0$ [/mm] kommt man dann auf die entsprechende Gleichung für $t$.

Gruß Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]