matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Pythagoras
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Pythagoras
Pythagoras < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pythagoras: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:55 Sa 23.04.2005
Autor: Andi

Hallo Mitglieder,

ich bin gerade bei der Nachhilfe (9. Klasse Gymnasium; Bayern) auf eine Aufgabe gestoßen, mit der ich so meine Probleme hab.

"Ein Quader ist 50cm lang, 30cm breit und 20cm hoch. Um wie viele mm unterscheidet sich die Länge der Raumdiagonale des Quaders von der eines volumengleichen Würfels."

Zunächst hab ich die Seitenlänge a des Würfels ausgerechnet:

[mm]50*30*20*cm^3=30000cm^3=a^3[/mm]
jetzt würde ich die 3.Wurzel ziehen, aber dies ist nach meiner Kenntnis in der 9. Klasse noch nicht bekannt
[mm]\wurzel[3]{30000cm^3}=a[/mm]

nun habe ich die Differenz d der beiden Diagonalen berechnet:
[mm]d=\wurzel{(20cm)^2+(30cm)^2+(50cm)^2}-\wurzel{a^2+a^2+a^2}[/mm]
[mm]d=\wurzel{3800cm^3}-\wurzel{3}*a[/mm]
[mm]d=\wurzel{3800cm^3}-\wurzel{3}*\wurzel[3]{30000cm^3}[/mm]
[mm]d \approx7,8cm[/mm]

Ich würde mich freuen wenn jemand sich mal meinen Weg anschauen würde und mir vielleicht sogar einen Tip geben könnte wie es besser (also ohne 3.Wurzel) geht.

Mit freundlichen Grüßen,
Andi

        
Bezug
Pythagoras: Hmm ...
Status: (Antwort) fertig Status 
Datum: 13:14 Sa 23.04.2005
Autor: Loddar

Hallo Andi !


Da sind Dir aber so einige Zahlendreher unterlaufen.
(oha - und gerade revidiert worden ...)


Vorweg: eine Lösung ohne Kubikwurzel und Quadratwurzel sehe ich nicht!

Ein altes Mathebuch (aus dem Jahr 1991 !!) führt die n-te Wurzel in der 10. Klasse ein. Ist also schon etwas überholt.
Es sind jetzt hier die Lehrer gefragt, wie das heutzutage aussieht.
(Daher belasse ich Fragestatus bei "teilweise beantwortet".)


> [mm]d=\wurzel{(20cm)^2+(30cm)^2+(50cm)^2}-\wurzel{a^2+a^2+a^2}[/mm]
>  [mm]d=\wurzel{3800cm^3}-\wurzel{3}*a[/mm]

[notok] Einheitenfehler:  [mm]d=\wurzel{3800cm^{\red{2}}}-\wurzel{3}*a[/mm]


>  [mm]d=\wurzel{3800cm^{\red{2}}}-\wurzel{3}*\wurzel[3]{30000cm^3}[/mm]
>  [mm]d \approx7,8cm[/mm]

[ok]

[aufgemerkt] In der Aufgabenstellung ist nach [mm] $\Delta [/mm] d$ in mm gefragt!


Liebe Grüße aus Preussen nach "Franggen" ;-)
Loddar


Bezug
                
Bezug
Pythagoras: Danke Loddar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:21 Sa 23.04.2005
Autor: Andi

Hallo Loddar,

> Da sind Dir aber so einige Zahlendreher unterlaufen.
>  (oha - und gerade revidiert worden ...)

Da musst du aber fix meine Frage gelesen haben, denn ich hab sie gleich danach wieder korrigiert. Aber beim nächsten mal, werde ich zuerst meine Frage korrekturlesen und dann posten, versprochen :-).

> Vorweg: eine Lösung ohne Kubikwurzel und Quadratwurzel sehe
> ich nicht!

Das beruhigt mich. Ich kann mir auch keine vorstellen, aber vielleicht findet sich ja doch noch irgendein Trick.

> Liebe Grüße aus Preussen nach "Franggen" ;-)

Vielen Dank von Franggen ins Preussenland,
Andi

Bezug
                        
Bezug
Pythagoras: "Werbung"
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:31 Sa 23.04.2005
Autor: Loddar

Hallo Andi!


> > Vorweg: eine Lösung ohne Kubikwurzel und Quadratwurzel sehe
> > ich nicht!
>  
> Das beruhigt mich. Ich kann mir auch keine vorstellen, aber
> vielleicht findet sich ja doch noch irgendein Trick.

Ich habe mal Max auf Deine Frage hingewiesen, vielleicht kann der aus "Paukersicht" mal (sorry Max) weiterhelfen!


Gruß
Loddar


Bezug
                                
Bezug
Pythagoras: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:55 Sa 23.04.2005
Autor: Max

Hallo Andi, Loddar,

soweit ich das aus NRW kenne wird vor Pythagoras eigentlich immer erstmal definiert was Wurzeln sind - und das auch schon für nicht Quadratwurzeln. Dass [mm] $\sqrt[n]{x}=x^{\frac{1}{n}}$ [/mm] wird erst später nachgewiesen. Von daher denke ich, ist es kein Problem mit [mm] $\sqrt[3]{30000}\,\text{cm}$ [/mm] zu arbeiten.

Max

Bezug
        
Bezug
Pythagoras: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Sa 23.04.2005
Autor: PStefan

Hallo!

Habe dieses Beispiel einmal untersucht und bin auf keinen 2.Lösungsweg ohne einer Kubikwurzel gekommen. Ich denke das mit der Wurzel geht schon in Ordnung. Außerdem kannst du sowieso im TR die  [mm] \wurzel[3]{von_ irgendeiner _Zahl} [/mm] eingeben.

lg

Bezug
                
Bezug
Pythagoras: Kein Argument!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:38 Sa 23.04.2005
Autor: Loddar

Hallo PStefan!


> Außerdem kannst du sowieso im TR die [mm]\wurzel[3]{von_ irgendeiner _Zahl}[/mm] eingeben.


Das kann ja kein Argument sein! Schließlich sollte der TR-Anwender auch wissen, was er da gerade berechnet und warum.
Der TR sollte nur eine Rechen-Unterstützung sein, nicht das Denken abnehmen (das gilt gleichermaßen für Computer und ihre Programme etc.).


Gruß
Loddar


Bezug
                        
Bezug
Pythagoras: Ist schon klar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:40 Sa 23.04.2005
Autor: PStefan

Hallo Loddar!

Das ist mir schon klar, da hast du recht. Wäre besser gewesen, wenn ich es so gepostet hätte:  [mm] \wurzel[3]{x} [/mm]

x...irgendeine Zahl

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]