matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometriePythagorean Triplet
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Topologie und Geometrie" - Pythagorean Triplet
Pythagorean Triplet < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pythagorean Triplet: Flächenberechnung
Status: (Frage) beantwortet Status 
Datum: 13:10 Fr 23.10.2009
Autor: Christian2180

Aufgabe
If the area of rectangle ABCD is 4*(square root of 3), then what is the area of the square DEFG?

Wir haben also das Rechteck ABCD, welches auf der Breite AD liegt. Zusaetzlich haben wir das Quadrat DEFG. Beide Okjekte schneiden sich im Punkt D, haben den Punkt D gemeinsam. Bildlich gesprochen liegt das Rechteck oben links und das Quadrat unten rechts an der Ecke D des Rechtecks. Zusaetzlich ist eine Linie eingezeichnet zwischen Punkt C des Rechtecks und Punkt E des Quadrats, woraus sich dann ein Hilfsdreieck CDE ergibt. Zusaetzlich ist die Diagonale im Rechteck ABCD zwischen Punkt A und Punkt C eingezeichnet, woraus sich das Dreieck ACD ergibt. Im Dreick ACD betragen die Winkel 30 Grad/90Grad/60Grad und im 3-Eck CDE betragen die Winkel 45/45/90Grad. Die Flaeche des Rechtecks ABCD betraegt 4x(Wurzel aus 3). Wie gross ist die Flaeche des Quadrats DEFG? Vorgegebene Loesung die ich nicht verstehe: "The key to this problem is to remember that the sides of a 30/60/90 degree triangle are related as 1:Wurzel 3 : 2 and the sides of a 45/45/90degree triangle are related as 1:1:2. Triangle ACD is a 30/60/90degree triangle so its sides are related as 1:(Wurzel3):2. Hence, [mm] 1/2*AD*CD=(Wurzel3)/2*(AD^2)=1/2*4*(Wurzel3), (Wurzel3)*(AD^2) [/mm] = 4*(Wurzel3). So, AD=2, and CD=DE=2*(Wurzel3). So, the area of DEFG is 12." Ich verstehe nicht, was das Quadrat der Seite AD hier zu suchen hat. Wozu wird die Seite AD quadriert?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Pythagorean Triplet: Skizze
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:16 Fr 23.10.2009
Autor: M.Rex

Hallo

Stelle mal ne Skizze ein

Anleitung:
Wenn du im Quelltext
[img]1[/img]
eingibst, wirst du beim Abschicken zum Senden des Bildes aufgefordert.

Marius

Bezug
        
Bezug
Pythagorean Triplet: Antwort
Status: (Antwort) fertig Status 
Datum: 10:05 Mi 28.10.2009
Autor: felixf

Hallo!

> If the area of rectangle ABCD is 4*(square root of 3), then
> what is the area of the square DEFG?
>
>  Wir haben also das Rechteck ABCD, welches auf der Breite
> AD liegt. Zusaetzlich haben wir das Quadrat DEFG. Beide
> Okjekte schneiden sich im Punkt D, haben den Punkt D
> gemeinsam. Bildlich gesprochen liegt das Rechteck oben
> links und das Quadrat unten rechts an der Ecke D des
> Rechtecks. Zusaetzlich ist eine Linie eingezeichnet
> zwischen Punkt C des Rechtecks und Punkt E des Quadrats,
> woraus sich dann ein Hilfsdreieck CDE ergibt. Zusaetzlich
> ist die Diagonale im Rechteck ABCD zwischen Punkt A und
> Punkt C eingezeichnet, woraus sich das Dreieck ACD ergibt.

Du musst ja die Seitenlaenge $C D$ bestimmen, da diese gleich den Seitenlaengen $D E$ und $D G$ ist und deren Quadrat somit der gesuchte Flaecheninhalt ist.

> Im Dreick ACD betragen die Winkel 30 Grad/90Grad/60Grad und
> im 3-Eck CDE betragen die Winkel 45/45/90Grad. Die Flaeche
> des Rechtecks ABCD betraegt 4x(Wurzel aus 3). Wie gross ist
> die Flaeche des Quadrats DEFG?
>
> Vorgegebene Loesung die ich
> nicht verstehe: "The key to this problem is to remember
> that the sides of a 30/60/90 degree triangle are related as
> 1:Wurzel 3 : 2 and the sides of a 45/45/90degree triangle
> are related as 1:1:2.

Du meinst $1 : 1 : [mm] \sqrt{2}$? [/mm]

> Triangle ACD is a 30/60/90degree
> triangle so its sides are related as 1:(Wurzel3):2. Hence,
> [mm]1/2*AD*CD=(Wurzel3)/2*(AD^2)=1/2*4*(Wurzel3)[/mm],

Der Flaecheninhalt von ACD ist ja die Haelfe des Flaecheninhaltes von ABCD. Also ist $1/2 * AD * CD = [mm] 4\sqrt{3} [/mm] / 2$. Gleichzeitig ist $CD = [mm] \sqrt{3} [/mm] AD$, womit $1/2 * AD * CD = [mm] \sqrt{3}/2 (AD)^2$ [/mm] ist.

Damit erhaelst du:

> [mm](Wurzel3)*(AD^2) = 4*(Wurzel3)[/mm].

Und daraus dann:

> So, AD=2, and CD=DE=2*(Wurzel3).

... da $AD * CD = 4 [mm] \sqrt{3}$ [/mm] der Flaecheninhalt ovn $A B C D$ ist.

> So, the area of DEFG is 12." Ich verstehe nicht, was das Quadrat
> der Seite AD hier zu suchen hat. Wozu wird die Seite AD
> quadriert?

Verstehst du es jetzt?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]