matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriePythagoreische Zahlentripel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Zahlentheorie" - Pythagoreische Zahlentripel
Pythagoreische Zahlentripel < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pythagoreische Zahlentripel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 Mi 15.11.2006
Autor: Ranftl

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Erhält man mit [mm] a=k(m^2-n^2); [/mm] b=k2mn; [mm] c=k(m^2+n^2) [/mm] m>n und k,m,n natürliche Zahlen alle pythagoreischen Zahlentripel. Wie geht der Beweis?

        
Bezug
Pythagoreische Zahlentripel: kleine Herleitung
Status: (Antwort) fertig Status 
Datum: 17:46 So 19.11.2006
Autor: moudi

Hallo Ranftl

Ja, aber ich verzichte auf die Details:

Sei a,b,c ein solches Zahlentripel. Sei k der grösste gemeinsame Teiler von a,b,c. Dann seien a', b', c' so, dass ka'=a etc. Man überlegt sich leicht, dass dann a',b',c' ebenfalls pythagoräisches Zahlentripel ist. Weiter kann man sich überlegen, dass a', b', c' paarweise teilerfremd sind, sonst müsste wegen $a'^2+b'^2=c'^2$ ein gemeinsamer Teiler von zweien auch gemeinsamer Teiler der dritten Zahl sein, ein Widerspruch.

Weiter kann man schliessen, dass entweder a' oder b' gerade sind. Wären beide ungerade, dann müsste c' gerade sein und $c'^2$ durch 4 teilbar sein. Aber die Summe von 2 Quadraten ungerader Zahlen ist nie durch 4 teilbar. Deshalb ist a' oder b' gerade, sagen wir b' und a' ist ungerade, ebenso ist c' ungerade.

Sei daher  b'=2b''. Aus $a'^2+b'^2=c'^2$ folgt [mm] $b''^2=\frac{c'+a'}{2}\cdot \frac{c'-a'}{2}$. [/mm] Weil a' und c' teilerfremd sind, müssen auch die Zahlen [mm] $x=\frac{c'+a'}{2}$ [/mm] und $y= [mm] \frac{c'-a'}{2}$ [/mm] wegen x+y=c' und x-y=a' teilerfremd sein. Das Produkt der  teilerfremden Zahlen x und y kann nur dann eine Quadratzahl ($=b'^2$) sein, wenn x und y selber Quadratzahlen sind, d. h. es existieren Zahlen m und n so, dass [mm] $x=m^2$ [/mm] und [mm] $y=n^2$. [/mm]

Einsetzen und nach a,b,c auflösen liefert das Gewünschte.

mfG Moudi





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]