matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisQ-Homomorphismus 
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Q-Homomorphismus
Q-Homomorphismus < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Q-Homomorphismus : Homomorphismus
Status: (Frage) beantwortet Status 
Datum: 16:15 Sa 01.01.2005
Autor: MrPink

Hallo, was stelle ich mir unter einem

stetigen Q-Homomorphismus vor???

        
Bezug
Q-Homomorphismus : Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Sa 01.01.2005
Autor: Clemens

Hallo!

Von einem Q-Homomorphismus spricht man, wenn man eine lineare Abbildung f:V --> W hat, wobei V,W Q-Vektorräume sind. D. h. für alle [mm] v_{1},v_{2} \in [/mm] V, [mm] q_{1}, q_{2} \in [/mm] Q gilt:
   [mm] f(q_{1}*v_{1} [/mm] + [mm] q_{2}*v_{2}) [/mm] = [mm] q_{1}*f(v_{1}) [/mm] + [mm] q_{2}*f(v_{2}) [/mm]

Eine stetige Abbildung f:V --> W setzt voraus, dass es zwei Metriken [mm] d_{V} [/mm] und [mm] d_{W} [/mm] gibt, so dass für alle v und für alle 0 < e [mm] \in \IR [/mm] ein 0 < d [mm] \in \IR [/mm] existiert, so dass für alle x mit [mm] d_{V}(x,v) [/mm] < d auch [mm] d_{W}(f(x),f(v)) [/mm] < e gilt.

Clemens

Bezug
        
Bezug
Q-Homomorphismus : Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Sa 01.01.2005
Autor: MrPink

Ich habe nun folgende aufgabe:


Sei f von R -> R ein stetiger Q-Homomorphismus , dann ist f auch ein R-Homorphismus. Ziegen Sie dies.

Hat jemand ne idee ?

Bezug
                
Bezug
Q-Homomorphismus : Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Sa 01.01.2005
Autor: andreas

hi

was noch zu zeigen ist, ist, dass für [m] \lambda \in \mathbb{R} [/m]  gilt, dass [m] f(\lambda v) = \lambda f(v) [/m]

dafür benötigst du, dass [m] \mathbb{Q} [/m] dicht in [m] \mathbb{R} [/m] liegt, also das für beliebiges [m] x \in \mathbb{R} [/m] eine folge [m] (x_k)_{k \in \mathbb{N}} [/m] in [m] \mathbb{Q}[/m]existiert mit

[m] \lim_{k \to \infty} x_k = x [/m]

und wegen der stetigkeit von $f$ gilt, dass [m] f \left( \lim_{k \to \infty} y_k \right) = \lim_{k \to \infty} f(y_k) [/m] gilt.

du kannst ja deine lösung hier posten.

grüße
andreas


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]