matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesQuadratische Ergänzung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Quadratische Ergänzung
Quadratische Ergänzung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Ergänzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:43 Di 07.07.2009
Autor: pippilangstrumpf

Aufgabe
[mm] 3\*x_{1}^{2} [/mm] + [mm] 2\*x_{2}^{2} [/mm] + [mm] 3\*x_{3}^{2}+8\*x_{1}x_{3}=1 [/mm]

[mm] 3\*x_{1}^{2} [/mm] + [mm] 2\*x_{2}^{2} [/mm] + [mm] 3\*x_{3}^{2}+8\*x_{1}x_{3}=1 [/mm]
Ich soll hier quadratische Ergänzung durchführen...

Jetzt würde ich euch um eure Hilfe bitten!

Zuerst würde ich [mm] 2\*x_{2}^{2} [/mm] stehen lassen, da ich hier bereits ein Quadrat habe, richtig?
Dann würde ich mich auf [mm] 3\*x_{1}^{2} [/mm] und [mm] 3\*x_{3}^{2}+8\*x_{1}x_{3}=1 [/mm] stürzen.
Die 1 würde ich auf die linke Seite bringen (Term = 0 setzen).

Dann bleibt mir noch übrig:
[mm] 3\*x_{1}^{2}+ 3\*x_{3}^{2}+8\*x_{1}x_{3}-1 [/mm] = 0 [mm] (2\*x_{2}^{2} [/mm] lasse ich jetzt für die Nebenrechnung weg!!!)

[mm] 3\*x_{1}^{2}+ 3\*x_{3}^{2}+8\*x_{1}x_{3}-1 [/mm] = 0
Wer kann mir hier weiter helfen?
Klammere ich die 3 aus?
3 [mm] (x_{1}^{2}+ x_{3}^{2}+\bruch{8}{3}x_{1}x_{3})-1=0 [/mm]

Dann lasse ich die 3 stehen und mache ein Binom:
3 [mm] (x_{1}+\bruch{4}{3} x_{3})x^{2}-1-\bruch{48}{9}=0 [/mm]

Bin ich soweit richtig?

Besten Dank, Gruß Pippi:-;





        
Bezug
Quadratische Ergänzung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 Di 07.07.2009
Autor: Al-Chwarizmi


> [mm]3\*x_{1}^{2}+2\*x_{2}^{2}+3\*x_{3}^{2}+8\*x_{1}x_{3}=1[/mm]

>  Ich soll hier quadratische Ergänzung durchführen...
>  

So wie es nach deiner früheren Aufgabe
aussieht, geht es wohl wieder darum,
des gemischte Glied  [mm] 8*x_1*x_3 [/mm] irgendwie
zum Verschwinden zu bringen, um dann
eine Summe von Quadraten zu bekommen.
Dies kann man allerdings auf verschiedene
Arten tun, die Aufgabe ist also nicht ein-
deutig gestellt
!

  

> Zuerst würde ich [mm]2\*x_{2}^{2}[/mm] stehen lassen, da ich hier
> bereits ein Quadrat habe, richtig?   [ok]

>  Dann würde ich mich auf [mm]3\*x_{1}^{2}[/mm] und
> [mm]3\*x_{3}^{2}+8\*x_{1}x_{3}=1[/mm] stürzen.

> .....  
> Dann bleibt mir noch übrig:
>  [mm]3\*x_{1}^{2}+ 3\*x_{3}^{2}+8\*x_{1}x_{3}-1[/mm] = 0

> [mm](2\*x_{2}^{2}[/mm] lasse ich jetzt für die Nebenrechnung
> weg!!!)
>  
> [mm]3\*x_{1}^{2}+ 3\*x_{3}^{2}+8\*x_{1}x_{3}-1[/mm] = 0

>  Wer kann mir hier weiter helfen?
>  Klammere ich die 3 aus?

> 3 [mm](x_{1}^{2}+ x_{3}^{2}+\bruch{8}{3}x_{1}x_{3})-1=0[/mm]

Lass lieber z.B. die [mm] 3*x_3^2 [/mm] vorerst aus dem Spiel,
also:

       $\ [mm] 3*(x_1^2+\bruch{8}{3}x_1x_3+.....)-......+3x_3^2-1=0$ [/mm]
  

> Dann lasse ich die 3 stehen und mache ein Binom:
>  3 [mm](x_{1}+\bruch{4}{3} x_{3})x^{2}-1-\bruch{48}{9}=0[/mm]    [notok]

Da wo ich oben die Pünktchen gesetzt habe,
kommt die Ergänzung hin:

       $\ [mm] 3*(x_1^2+\bruch{8}{3}x_1x_3\red{+\bruch{16}{9}x_3^2})\blue{-\bruch{16}{3}x_3^2}+3x_3^2-1=0$ [/mm]

       $\ [mm] 3*\left(x_1+\bruch{4}{3}x_3\right)^2-\bruch{7}{3}x_3^2-1=0$ [/mm]

Dann natürlich das Glied mit [mm] x_2^2 [/mm] wieder dazu
und du hast deinen Term ohne gemischte Glieder.
Da im gegebenen Term [mm] x_1 [/mm] und [mm] x_3 [/mm] genau symmetrisch
vorkommen, wäre jedoch statt der Lösung

       $\ [mm] 3*\left(x_1+\bruch{4}{3}x_3\right)^2+2x_2^2-\bruch{7}{3}x_3^2=1$ [/mm]

ebensogut möglich:

       $\ [mm] 3*\left(x_3+\bruch{4}{3}x_1\right)^2+2x_2^2-\bruch{7}{3}x_1^2=1$ [/mm]

Es gäbe noch (unendlich viele !) andere mögliche
Lösungen, falls nicht noch eine Zusatzbedingung
zu erfüllen ist.


LG     Al-Chw.





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]