matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenQuadratische Form Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Quadratische Form Basis
Quadratische Form Basis < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Form Basis: Idee
Status: (Frage) beantwortet Status 
Datum: 16:47 So 08.01.2012
Autor: Omikron123

Aufgabe
[mm] V=\mathbb{R}^4 [/mm] Finde Basen, bezüglich der die folgenden quadratischen Formen als Summe von Quadraten dargestellt sind und bestimme Rang und Positivitätsindex

[mm] q(v)=x_1^2+x_2^2+x_3^2+x_4^2+x_1x_4+x_2x_4+x_3x_4 [/mm]

Gibt es hier einen Trick um sofort eine Basis zu bestimmen?

Ich weiß wie ich die Funktion f aus q zurückgewinnen kann.

[mm] f(v,w)=\bruch{1}{2}(q(v+w)-q(v)-q(w)) [/mm] Daraus kann ich die Matrix der Bilinearform bzgl. der Standardbasis bestimmen und der Rang dieser Matrix ist der Rang von [mm] q=rg[f]_B [/mm]

Zum Positivitätsindex kann ich nicht viel sagen, da ich eine Definition oder etwas dergleichen nicht in meinen Aufzeichnungen, sowie dem Internet entdecken konnte.

        
Bezug
Quadratische Form Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 So 08.01.2012
Autor: MathePower

Hallo Omikron123,

> [mm]V=\mathbb{R}^4[/mm] Finde Basen, bezüglich der die folgenden
> quadratischen Formen als Summe von Quadraten dargestellt
> sind und bestimme Rang und Positivitätsindex
>  
> [mm]q(v)=x_1^2+x_2^2+x_3^2+x_4^2+x_1x_4+x_2x_4+x_3x_4[/mm]
>  Gibt es hier einen Trick um sofort eine Basis zu
> bestimmen?
>


Nun, der Trick ist die gemischtquadratischen Glieder mit Hilfe
von quadratischer Ergänzung zu eliminieren.


> Ich weiß wie ich die Funktion f aus q zurückgewinnen
> kann.
>  
> [mm]f(v,w)=\bruch{1}{2}(q(v+w)-q(v)-q(w))[/mm] Daraus kann ich die
> Matrix der Bilinearform bzgl. der Standardbasis bestimmen
> und der Rang dieser Matrix ist der Rang von [mm]q=rg[f]_B[/mm]
>  
> Zum Positivitätsindex kann ich nicht viel sagen, da ich
> eine Definition oder etwas dergleichen nicht in meinen
> Aufzeichnungen, sowie dem Internet entdecken konnte.


Gruss
MathePower

Bezug
                
Bezug
Quadratische Form Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:42 So 08.01.2012
Autor: Omikron123

Wie genau darf ich das jetzt verstehen? Wenn ich versuche Teile quadratisch zur ergänzen kommt bei mir immer irgendetwas dabei heraus.

Hilft es mir die Funktion f aus q zurückzugewinnen?

Bezug
                        
Bezug
Quadratische Form Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Mo 09.01.2012
Autor: MathePower

Hallo Omikron123,

> Wie genau darf ich das jetzt verstehen? Wenn ich versuche
> Teile quadratisch zur ergänzen kommt bei mir immer
> irgendetwas dabei heraus.
>  


Dann poste doch dieses "irgendetwas".


> Hilft es mir die Funktion f aus q zurückzugewinnen?  


Nein.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]