matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Quadratische Gl. mit 2 Unbekan
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Quadratische Gl. mit 2 Unbekan
Quadratische Gl. mit 2 Unbekan < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Gl. mit 2 Unbekan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:18 Do 15.12.2005
Autor: yeah

Aufgabe
Was muss man für $a$ wählen, damit die Gleichung eine, gar keine oder zwei Lösungen hat?
$x²-x-a = 0$

Hi,
ich krieg für a immer nur Ausdrücke raus, kann das sein?
keine Lösung:  [mm] \wurzel{ \bruch{x²}{4}+a} = 0[/mm]
usw.

Was mache ich falsch? Wenn ich mich richtig errinnere, hatten wir im Unterricht eine Zahl für a raus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Quadratische Gl. mit 2 Unbekan: Korrektur
Status: (Antwort) fertig Status 
Datum: 22:49 Do 15.12.2005
Autor: QCO

Da hast du dich verrechnet. Das Ergebnis deiner Rechnung darf ja nicht von x abhängen, sonst wäre es ja keine Lösung.
Die Lösungsgleichung für eine quadratische Gleichung der Form
[mm] x^{2}+ [/mm] p * x + q = 0
lautet ja:
[mm] -\bruch{p}{2} \pm \wurzel{\bruch{p^{2}}{4} - q}. [/mm]
Schau dir nochmal genau an, was in deinem Fall p und q sind; da stimmt was nicht.

Eine Lösung erhälst du, wenn der Ausdruck unter der Wurzel = 0, weil dann x = [mm] -\bruch{p}{2} \pm [/mm] 0 = [mm] -\bruch{p}{2}. [/mm]
Keine Lösung gibt es, wenn der Ausdruck < 0, weil man ja dann die Wurzel in den reellen Zahlen nicht ausrechnen kann.

Bezug
                
Bezug
Quadratische Gl. mit 2 Unbekan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:05 Do 15.12.2005
Autor: yeah


> Eine Lösung erhälst du, wenn der Ausdruck unter der Wurzel
> = 0, weil dann x = [mm]-\bruch{p}{2} \pm[/mm] 0 = [mm]-\bruch{p}{2}.[/mm]
>  Keine Lösung gibt es, wenn der Ausdruck < 0, weil man ja
> dann die Wurzel in den reellen Zahlen nicht ausrechnen
> kann.

Genau, also:
[mm]x_1,2 = \bruch{x}{2} \pm \wurzel{ \bruch{x^2}{4}+a}[/mm]
keine Lösung: [mm] \wurzel{\bruch{x^2}{4}+a}<0[/mm]
eine Lösung: [mm] \wurzel{\bruch{x^2}{4}+a}=0[/mm]
zwei Lösungen: [mm] \wurzel{\bruch{x^2}{4}+a}>0[/mm]
Wenn ich diese (Un-)Gleichungen jetzt allerdings nach a auflöse, erhalten ich ein von x abhängiges Ergebnis... (siehe Post #1)

Vielen Dank schon mal für die schnelle Antwort!

Bezug
                        
Bezug
Quadratische Gl. mit 2 Unbekan: Korrektur 2
Status: (Antwort) fertig Status 
Datum: 23:10 Do 15.12.2005
Autor: QCO

Nein, eben nicht.
In der Lösungsformel steht p*x, in deinem Fall nur x, d.h. 1*x.
p=1 nicht x
Das ist dein Fehler.

Wie ich schon geschrieben habe, kannst du doch keine Lösung für x haben, die von x abhängt.

Bezug
                                
Bezug
Quadratische Gl. mit 2 Unbekan: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:08 Fr 16.12.2005
Autor: yeah

Achja, natürlich! So ein banaler Fehler... Danke.

Nächstes Mal werde ich Mathe n bisschen früher am Tag anfangen... *gg*

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]