matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisQuadratische Gleichungen mit 2 Variablen lösen?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Quadratische Gleichungen mit 2 Variablen lösen?
Quadratische Gleichungen mit 2 Variablen lösen? < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Gleichungen mit 2 Variablen lösen?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Sa 21.08.2004
Autor: Iron

Hi,

ich habe diese Frage in keinem weiteren Forum gestellt.

Wir haben die Aufgabe erhalten ein Punkt P zu finden der vom Punkt A (-4;2) einen Abstand von 13 besitz und ein Abstand von 25 zu Punkt B (15;-17).

Als Hilfe bekamen wir die Gleichungen:

[mm] 13= \wurzel{(x+4)^2+(y-2)^2} [/mm]
[mm] 25= \wurzel{(x-15)^2+(y+17)^2} [/mm]


Wie bekomme ich hier die x und y Werte herraus und wie geh ich vor?
Ich hoffe ich poste es nicht im Falschen Forum, aber wir nehmen es grade in der 11. durch.

Bitte hilft mir!

Vielen Dank schonmal im Vorraus!


        
Bezug
Quadratische Gleichungen mit 2 Variablen lösen?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Sa 21.08.2004
Autor: Marc

Hallo Iron,

[willkommenmr]

> Wir haben die Aufgabe erhalten ein Punkt P zu finden der
> vom Punkt A (-4;2) einen Abstand von 13 besitz und ein
> Abstand von 25 zu Punkt B (15;-17).
>  
> Als Hilfe bekamen wir die Gleichungen:
>  
> [mm]13= \wurzel{(x+4)^2+(y-2)^2}[/mm]
>  [mm]25= \wurzel{(x-15)^2+(y+17)^2}[/mm]

Ja, so berechnet man den Abstand zweier Punkte.
Die erste Formel sagt aus: Der Abstand der Punkte P(x|y) und A(-4|2) soll 13 betragen.
Die zweite Formel sagt aus: Der Abstand der Punkte P(x|y) und B(15|-17) soll 25 betragen.

Allgemein lautet die Formel für den Abstand zweier Punkte [mm] P_1(x_1|y_1) [/mm] und [mm] P_2(x_2|y_2): [/mm]
[mm] $d=\wurzel{(x_1-x_2)^2+(y_1-y_2)^2}$ [/mm]
Sie folgt ganz leicht, wenn du die beiden Punkte [mm] P_1 [/mm] und [mm] P_2 [/mm] in ein Koordinatensystem einträgt, sie verbindest und noch eine waagerechte und eine senkrechte Strecke einzeichnest, so dass ein rechtwinkliges Dreieck entsteht. Dann ist nämlich die gesuchte Strecke die Hypotenuse, und für sie gilt
[mm] $d^2=(x_1-x_2)^2+(y_1-y_2)^2$ [/mm] (Satz des Pythagoras)

> Wie bekomme ich hier die x und y Werte herraus und wie geh
> ich vor?

Eine Möglichkeit wäre, deine beiden Gleichungen zu quadrieren, damit die Wurzeln wegfallen.
Dann könntest du die Klammern mit den binomischen Formeln auflösen und die erste von der zweiten Gleichung subtrahieren -- du erhältst so eine (lineare) Gleichung, in der [mm] x^2 [/mm] und [mm] y^2 [/mm] weggefallen sind.
Diese lineare Gleichung kannst du nach x (oder y) auflösen, und den gewonnen Ausdruck in eine der beiden Ausgangsgleichungen einsetzen -- du hast so eine quadratische Gleichung in nur einer Variable erhalten, die du dann mit p/q-Formel oder quadratischer Ergänzung auflösen kannst.

Soviel zum Fahrplan, falls du mit ihm nicht zurecht kommst, frage bitte einfach nach, ich habe dir ja absichtlich nur die nötigsten Infos gegeben ;-)

>  Ich hoffe ich poste es nicht im Falschen Forum, aber wir
> nehmen es grade in der 11. durch.

Nein, das passt schon, jedenfalls passt es genausowenig in die anderen Foren :-)

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]