matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieQuadratischer Rest mod p
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Quadratischer Rest mod p
Quadratischer Rest mod p < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratischer Rest mod p: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 So 19.05.2019
Autor: questionpeter

Aufgabe
Sei p eine Primzahl mit p>5. Zeige, dass die Gleichung [mm] x^2\equiv [/mm] 5(mod p)genau eine Lösung [mm] x\in \IZ [/mm] besitzt, wenn [mm] p\equiv \pm [/mm] 1(mod 5) ist.


Hallo,

Ist [mm] x\in \IZ [/mm] eine Lösung von [mm] x^2\equiv [/mm] 5 (mod p), dann ist es äquivalent dazu dass [mm] \bigg(\bruch{5}{p}\bigg)=1, [/mm] d.h. 5 ist quadratische Rest modulo p [mm] \gdw \bigg(\bruch{p}{5}\bigg)=1 \gdw p\equiv \pm [/mm] 1 (mod 5).

Ist das richtig?

        
Bezug
Quadratischer Rest mod p: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 So 19.05.2019
Autor: Gonozal_IX

Hiho,

erstmal: Die Formulierung deiner Frage ist falsch.

> Zeige, dass die Gleichung $ [mm] x^2\equiv [/mm] $ 5(mod p)genau eine Lösung $ [mm] x\in \IZ [/mm] $ besitzt, wenn $ [mm] p\equiv \pm [/mm] $ 1(mod 5) ist.

Bspw hat die Lösung für p=11=1 mod 5 zwei Lösungen.

Die Aufgabe soll wohl lauten:

> Zeige, dass die Gleichung $ [mm] x^2\equiv [/mm] $ 5(mod p) genau dann eine Lösung $ [mm] x\in \IZ [/mm] $ besitzt, wenn $ [mm] p\equiv \pm [/mm] $ 1(mod 5) ist.


> Ist [mm]x\in \IZ[/mm] eine Lösung von [mm]x^2\equiv[/mm] 5 (mod p), dann ist
> es äquivalent dazu dass [mm]\bigg(\bruch{5}{p}\bigg)=1,[/mm]

Warum sollte das gelten?

Gruß,
Gono

Bezug
                
Bezug
Quadratischer Rest mod p: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:09 Mo 20.05.2019
Autor: questionpeter

Das habe aus einem  Skript entnommen, denn da heißt es wenn es eine Lösung für [mm] x^2\equiv [/mm] a (mod p)  gibt dann heißt es das a ein quadratischer Rest modulo p ist, also [mm] \bigg(\bruch{a}{p}\bigg)=1.(legendre [/mm] Symbol)



Bezug
                        
Bezug
Quadratischer Rest mod p: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mi 22.05.2019
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Quadratischer Rest mod p: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:34 Di 21.05.2019
Autor: questionpeter

Kann mir da niemand helfen bzw einen Tipp geben?

Bezug
                
Bezug
Quadratischer Rest mod p: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:47 Mi 22.05.2019
Autor: hippias

Das sieht gut aus. Begründe Deine Rechnung vielleicht genauer.

Bezug
                
Bezug
Quadratischer Rest mod p: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Do 23.05.2019
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]