matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenQuadratwurzeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Quadratwurzeln
Quadratwurzeln < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratwurzeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:45 Di 23.11.2010
Autor: Mathematiklady

Aufgabe
Geben Sie die mathematische exakte Formulierung für
[mm] \wurzel{2+}\wurzel{2+}\wurzel{2+}\wurzel{...}=2 [/mm] an und beweisen sie die Gleichung.

Also das ist die Aufgabe an der ich gerade sitze und ich habe schon einen Ansatz bei dem ich denke, dass er leider falsch ist und ihn somit auch nicht beweisen kann...

Also:

[mm] (a_{n})_{n\in\IN} [/mm] mit [mm] a_{1}=2 [/mm] und [mm] a_{n+1}=\wurzel{1+a_{n}} [/mm] für [mm] n\in\IN [/mm]

Ist der Ansatz richtig und kann man diesen dann mnit einer Induktion beweisen?

Vielen dank schon mal für eure Mühe.......

        
Bezug
Quadratwurzeln: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Di 23.11.2010
Autor: Pappus

Guten Abend!

> Geben Sie die mathematische exakte Formulierung für
> [mm]\wurzel{2+}\wurzel{2+}\wurzel{2+}\wurzel{...}=2[/mm] an und
> beweisen sie die Gleichung.
>  Also das ist die Aufgabe an der ich gerade sitze und ich
> habe schon einen Ansatz bei dem ich denke, dass er leider
> falsch ist und ihn somit auch nicht beweisen kann...
>  
> Also:
>  
> [mm](a_{n})_{n\in\IN}[/mm] mit [mm]a_{1}=2[/mm] und [mm]a_{n+1}=\wurzel{1+a_{n}}[/mm]
> für [mm]n\in\IN[/mm]
>  
> Ist der Ansatz richtig und kann man diesen dann mnit einer
> Induktion beweisen?
>  
> Vielen dank schon mal für eure Mühe.......

Ich vermute, dass Deine Aufgabenstellung lautet:

[mm] $\sqrt{2+\sqrt{2+\sqrt{2+...}}}=2$ [/mm]

Wenn dem so ist:

[mm] $x=\sqrt{2+\sqrt{2+\sqrt{2+...}}}$ [/mm]

Quadrieren und die 1. Gleichung von der 2. abziehen.

Dann x berechnen.

Viel Erfolg

Salve

Pappus

Bezug
                
Bezug
Quadratwurzeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 Di 23.11.2010
Autor: Mathematiklady

Ja meine Aufgabenstellung heißt so,
[mm] \sqrt{2+\sqrt{2+\sqrt{2+...}}}=2 [/mm]
wusste nicht, dass man das so aufschreiben kann.

Hmm vielen Dank zunächst für die schnelle antwort.

Aber muss ich das denn nach x ausrechnen ich soll ja beweisen das die Formel gilt und nicht den wert von x oder verstehe ich das falsch?

Lg

Bezug
                        
Bezug
Quadratwurzeln: Querverweis
Status: (Antwort) fertig Status 
Datum: 21:25 Di 23.11.2010
Autor: Loddar

Hallo Mathematiklady!


Diese Aufgabe wurde bereits hier ausführlich(st) diskutiert.


Gruß
Loddar


Bezug
        
Bezug
Quadratwurzeln: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 Di 23.11.2010
Autor: Pia90

Hey,
also ich wär glaube ich wie folgt vorgegangen (für Richtigkeit übernehme ich aber keine Garantie...)
Erstmal hätte ich folgendes gesetzt:
[mm] (a_n)_{n \in \IN} [/mm] mit [mm] a_0 [/mm] = [mm] \wurzel{2} [/mm] und [mm] a_{n +1} [/mm] = [mm] \wurzel{2 + a_n} [/mm] für n [mm] \in \IN [/mm]
Also wäre die mathematisch exakte Formulierung:
[mm] \limes_{n\rightarrow\infty} a_n [/mm] = 2

Beweis:
Da [mm] a_{n+1}^2 [/mm] = 2 + [mm] a_n [/mm] gilt für den Grenzwert
[mm] a^2 [/mm] = 2 + a [mm] \gdw [/mm] (a [mm] -\bruch{1}{2})^2 [/mm] = [mm] \bruch{9}{4} [/mm]
da (a- [mm] \bruch{1}{2}) [/mm] > 0 [mm] \Rightarrow [/mm] a - [mm] \bruch{1}{2} [/mm] = [mm] \bruch{3}{2} [/mm]
[mm] \Rightarrow [/mm] a=2

[mm] \Box [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]