matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieQuersumm teilbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Quersumm teilbarkeit
Quersumm teilbarkeit < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quersumm teilbarkeit: korrektur
Status: (Frage) überfällig Status 
Datum: 13:19 Sa 07.05.2016
Autor: fugit

Aufgabe
Sei [mm] $n=\summe_{i=0}^{k} a_i10^i =\summe_{j=0}^{l} b_j1000^j \in \IN$ [/mm] (mit $0 [mm] \le a_i \le [/mm] 9 , 0 [mm] \le b_j \le [/mm] 999$).Zeigen sie:

a) $n$ ist durch $7$ teilbar genau dann wenn ihre gewichte Quersumme [mm] $Q_w(n)=\summe_{j=0}^{k} a_jw_j$ [/mm] durch $7$ teilbar ist,wo bei die Gewichte [mm] $w_j$ [/mm] gegeben sind durch:

        $ | j (mod 6) |0|1|2| 3 | 4 | 5 |$
       $  |      [mm] w_i [/mm]     |1|3|2|-1|-3 | -2|$

(b) $n$ ist durch $7$ teilbar genau dann wenn ihre alternierende $3$-Quersumme [mm] $Q'_3(n)=\summe_{j=0}^{l}(-1)^jb_j$ [/mm] durch $7$ teilbar ist.

$c) n [mm] \equiv [/mm] Q'_3(n) [mm] \equiv Q_w(n) [/mm] (mod 7)$


(d) $n$ ist durch $37$ teilbar genau dann wenn ihre $3$-Quersumme [mm] $Q'_3(n)=\summe_{j=0}^{l}b_j [/mm] $ durch $37$ teilbar ist.

(e) Ähnliche Teilbarkeitsregeln gibt es für jede beliebige Zahl (anstelle von $7$ oder $37$).

hi


kann mir einer nen tipp für die $a)$ geben? muss ich da mal was mit der Tabelle machen?


$b)$

ich schreibe $n$ als $n=1000*b+a=1001b+(a-b)$.  $a$ ist die Zifferngruppe aus den letzten $3$ Ziffern der Zahl und $1000b$ ist somit der Rest.Jetzt muss ich widerrum prüfen ,ob $(a-b)$ durch $7$ teilbar ist.Dies mache ich mit der gleichen prozedur,jedoch dadurch,dass $ b$ eine negatives Vorzeichen hat ensteht so mit das alternierende Vorzeichen.

ich möchte gerne nun meinen Beweis mit der modulo Rechnung durch führen

$7$  teilt $n [mm] \gdw [/mm]  n [mm] \equiv [/mm] 0 (mod 7)$

mit aufgaben vorraussetzung $n = [mm] \summe_{j=0}^{l} b_j10^{3j}$ [/mm] mit $0 [mm] \le b_j \le [/mm] 999$


$n = [mm] \summe_{j=0}^{l} b_j10^{3j} [/mm] mod 7 = [mm] (\summe_{j=0}^{l} (b_j10^{3j} [/mm] mod 7 )) mod [mm] 7=(\summe_{j=0}^{l} (b_j [/mm] mod [mm] 7*10^{3j} [/mm] mod 7 )) mod [mm] 7=(\summe_{j=0}^{l} (b_j [/mm] mod [mm] 7*(-1)^j [/mm] mod7 )) mod [mm] 7=(\summe_{j=0}^{l} b_j *(-1)^j [/mm]  ) mod 7 $

beweis ende


c) keine ahnung.. :/


d)

$37$  teilt $n [mm] \gdw [/mm]  n [mm] \equiv [/mm] 0 (mod 37)$

ich schreibe $n$ als $n=1000*b+a=999b+(a+b)$. jetzt auf a+b wieder die gleich prozedur

$ n = [mm] \summe_{j=0}^{l} b_j10^{3j} [/mm] mod 37 = [mm] (\summe_{j=0}^{l} (b_j10^{3j} [/mm] mod 37 )) mod [mm] 7=(\summe_{j=0}^{l} (b_j [/mm] mod [mm] 37\cdot{}10^{3j} [/mm] mod 37 )) mod [mm] 7=(\summe_{j=0}^{l} (b_j [/mm] mod [mm] 37\cdot{}(1)^j [/mm] mod37 )) mod [mm] 7=(\summe_{j=0}^{l} b_j \cdot{}(1)^j [/mm] ) mod 37 =  [mm] (\summe_{j=0}^{l} b_j [/mm]  ) mod 37 $ Beweis end


e) leider auch keine ahnung..:/


liebe grüße euch allen

        
Bezug
Quersumm teilbarkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mo 09.05.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]