matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationQuotient zweier Ableitungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - Quotient zweier Ableitungen
Quotient zweier Ableitungen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotient zweier Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 Do 19.07.2007
Autor: Hing

Aufgabe
Bestimmen Sie den Anstieg der Kurve für t= π / 2: x(t)=4cos(3t)+3cos(t);
y(t)=2sin(2t)+3sin(t) ; 0 ≤ t ≤ 2 π   .

hi, die aufgabe erschien mir sehr einfach. aber die lösung ist mir leider rätselhaft!

sie lautet:

[Dateianhang nicht öffentlich]

wieso wird von den beiden ableitungen ein quotient gebildet? aus der aufgabe lese ich das nicht heraus. was mache ich denn falsch?

Dateianhänge:
Anhang Nr. 1 (Typ: tiff) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
        
Bezug
Quotient zweier Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Do 19.07.2007
Autor: Somebody


> Bestimmen Sie den Anstieg der Kurve für t= π / 2:
> x(t)=4cos(3t)+3cos(t);
>  y(t)=2sin(2t)+3sin(t) ; 0 ≤ t ≤ 2 π   .
>  hi, die aufgabe erschien mir sehr einfach. aber die lösung
> ist mir leider rätselhaft!
>  
> sie lautet:
>  
> [Dateianhang nicht öffentlich]
>  
> wieso wird von den beiden ableitungen ein quotient
> gebildet?

Du bist doch sicher damit einverstanden, dass der Vektor [mm] $\vektor{\dot{x}(t_0)\\\dot{y}(t_0)}$ [/mm] Richtungsvektor der Tangente an die Kurve [mm] $\gamma:\; t\mapsto \vektor{x(t)\\y(t)}$ [/mm] im Punkt [mm] $\vektor{x(t_0)\\y(t_0)}$ [/mm] ist. - Oder? - Die Steigung dieser Tangente (ihr "Anstieg") ist einfach der Tangens des Steigungswinkels dieses (tangentialen) Vektors, also das Verhältnis seiner $y$-Koordinate [mm] $\dot{y}$ [/mm] zu seiner $x$-Koordinate [mm] $\dot{x}$. [/mm]

> Aus der aufgabe lese ich das nicht heraus. was
> mache ich denn falsch?

Du bist vielleicht zur Zeit einfach eine Spur zu sehr auf Analysis eingestellt - statt auf elementare Vektoralgebra und / oder Trigonometrie...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]