Quotientenraum < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei $V = [mm] \IR^4$ [/mm] und $U = [mm] \text{span}\{(2, 2, 0,-1), (1, 1, 1, 0)\}$. [/mm] Untersuchen Sie welche der Abbildungen
a) [mm] $f_1 [/mm] : V [mm] \ni (x_1, x_2, x_3, x_4) \rightarrow (x_1 [/mm] - [mm] x_2, x_1 [/mm] - [mm] x_3 [/mm] + [mm] 2x_4, x_2 [/mm] - [mm] x_3 [/mm] + [mm] 2x_4) \in \IR^3$,
[/mm]
b) [mm] $f_2 [/mm] : V [mm] \ni (x_1, x_2, x_3, x_4) \rightarrow (x_1 [/mm] − [mm] x_2, x_2 [/mm] − [mm] x_3, x_3 [/mm] − [mm] x_1) \in \IR^3
[/mm]
über den Qutientenraum $V/U$ faktorisieren d.h. ob es Abbildungen [mm]g_i : V/U \rightarrow \IR^3[/mm] für [mm]i = 1, 2[/mm] derart gibt, dass [mm] $f_i [/mm] = [mm] g_i \circ \pi$ [/mm] ist, wobei [mm] $\pi [/mm] : V [mm] \rightarrow [/mm] V/U$ die Quotientenabbildung ist. |
Ich habe diese Frage noch nirgendwo anders gestellt:
Diese Aufgabe kam in einer Übungsklausur dran und wurde bisher noch nicht besprochen.
Das hört sich so an, als solle man die eine Abbildung durch die andere teilen können...?
Wie fängt man da an?
|
|
|
|
> Sei [mm]V = \IR^4[/mm] und [mm]U = \text{span}\{(2, 2, 0,-1), (1, 1, 1, 0)\}[/mm].
> Untersuchen Sie welche der Abbildungen
>
> a) [mm]f_1 : V \ni (x_1, x_2, x_3, x_4) \rightarrow (x_1 - x_2, x_1 - x_3 + 2x_4, x_2 - x_3 + 2x_4) \in \IR^3[/mm],
>
> b) [mm]$f_2[/mm] : V [mm]\ni (x_1, x_2, x_3, x_4) \rightarrow (x_1[/mm]
> − [mm]x_2, x_2[/mm] − [mm]x_3, x_3[/mm] − [mm]x_1) \in \IR^3[/mm]
>
> über den Qutientenraum [mm]V/U[/mm] faktorisieren d.h. ob es
> Abbildungen [mm]g_i : V/U \rightarrow \IR^3[/mm] für [mm]i = 1, 2[/mm] derart
> gibt, dass [mm]f_i = g_i \circ \pi[/mm] ist, wobei [mm]\pi : V \rightarrow V/U[/mm]
> die Quotientenabbildung ist.
> Ich habe diese Frage noch nirgendwo anders gestellt:
>
> Diese Aufgabe kam in einer Übungsklausur dran und wurde
> bisher noch nicht besprochen.
>
> Das hört sich so an, als solle man die eine Abbildung durch
> die andere teilen können...?
Hallo,
wieso teilen?
Was Du tun sollst, ist ja in der Aufgabe klar beschrieben: Du sollst gucken, ob es solch eine Abbildung [mm] g_i [/mm] mit der geforderten Eigenschaft gibt.
> Wie fängt man da an?
Gerechnet habe ich das nicht, aber ich würde spontan so beginnen:
Da es um Abbildungen zwischen den Räumen [mm] \IR^4, \IR^3, \IR^4 [/mm] / U geht, würde ich mir erstmal passende Basen der Räume nehmen, um die jeweils die Abbildungsmatrizen aufstellen zu können.
Eventuell ist es lohnend, gleich mal zu schauen, welchen Rang die Matrizen haben bzw. haben können.
Wenn [mm] B_4 [/mm] eine Basis des [mm] \IR^4, B_3 [/mm] eine Basis des [mm] \IR^3 [/mm] und B eine Basis des [mm] \IR^4 [/mm] / U ist, muß man dann nachgucken, ob
[mm] _{B_3}M_{B_4}(f_i)=_{B_3}M_{B}(g_i)*_{B}M_{B_4}(\pi)
[/mm]
möglich ist.
Gruß v. Angela
|
|
|
|
|
Der Professor hat heute noch ein paar Worte darüber verloren und meinte, es würde genügen zu zeigen, dass U [mm] \subseteq [/mm] Kern(f) sei (was ja keine Schwierigkeit ist, da beide Vektoren von U, auf f angewendet, jeweils Null ergeben). Nur warum hat er leider nicht gesagt.....?
|
|
|
|
|
> Der Professor hat heute noch ein paar Worte darüber
> verloren und meinte, es würde genügen zu zeigen, dass U
> [mm]\subseteq[/mm] Kern(f) sei (was ja keine Schwierigkeit ist, da
> beide Vektoren von U, auf f angewendet, jeweils Null
> ergeben). Nur warum hat er leider nicht gesagt.....?
Hallo,
das hängt schon ziemlich mit dem zusammen, was ich zuvor erzählt habe.
Wenn [mm] f_i [/mm] dasselbe sein soll wie [mm] g_i\circ \pi, [/mm] dann müssen die ja auf einer Basis des [mm] \IR^4 [/mm] übereinstimmen.
Eine Basis des [mm] \IR^4 [/mm] erhältst Du, wenn Du die beiden Vektoren [mm] u_1 [/mm] und [mm] u_2, [/mm] die U aufspannen, durch Vektoren [mm] u_3, u_4 [/mm] zu einer Basis des [mm] \IR^4 [/mm] ergänzt.
Nun berechnen wir mal [mm] g_i\circ \pi (u_1):
[/mm]
[mm] g_i\circ \pi (u_1):=g_i(u_1+U)=g_i(U)=0, [/mm] denn [mm] g_i [/mm] soll ja eine lineare Abildung sein.
Tja, und wenn nun [mm] f_i(u_1)\not=0 [/mm] wäre, sähe es schlecht aus. Für [mm] u_2 [/mm] entsprechend.
[mm] u_3 [/mm] und [mm] u_4 [/mm] hingegen machen keine Probleme.
Es ist ja [mm] (u_3+U, u_4+U) [/mm] eine Basis von V/U.
Und auf dieser Basis kannst Du dann Deine Abbildung [mm] g_i [/mm] nach Lust und Laune definieren.
Du sagst also [mm] g_i(u_3+U):=f_i(u_3), [/mm] für [mm] u_4 [/mm] entsprechend, und sofern [mm] U\subset [/mm] Kernf, ist dann alles i.O.
Gruß v. Angela
|
|
|
|