matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKrypto,Kodierungstheorie,ComputeralgebraRSA - Kryptographie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Krypto,Kodierungstheorie,Computeralgebra" - RSA - Kryptographie
RSA - Kryptographie < Krypt.+Kod.+Compalg. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Krypto,Kodierungstheorie,Computeralgebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

RSA - Kryptographie: Modulo
Status: (Frage) beantwortet Status 
Datum: 10:45 Mi 03.05.2006
Autor: Neutrino_2003

Aufgabe
Ver- und Entschlüsselung
Mit dem RSA Verfahren zu verschlüsseln ist relativ einfach. Man nehme eine Zahl m und potenziere Sie mit dem öffentlichen Schlüssel e. Das Ergebnis rechnen wir modulo n und erhalten die Geheimzahl c.

c = me % n

Der Empfänger entschlüsselt auf die Gleiche Weise, benutzt aber statt des öffentlichen Schlüssels den privaten. Er rechnet also

m' = cd % n

Wenn alles gut gegangen ist, also die Schlüssel gültig sind, dann gilt m' = m. Sie glauben es nicht? Dann nehmen wir ein Beispiel.

Beispiel
Wir wählen p = 3 und q = 7. Damit ist n = p * q = 3 * 7 = 21. Für φ(n) erhalten wir 12, denn (p-1)*(q-1) = (3-1)*(7-1) = 2*6 = 12. Nun wählen wir e = 11 (teilerfremd zu φ(n)). Daraus errechnen wir d = 23, da 23 * 11 % 12 = 1 ist.

Wir wollen nun die Zahl 9 verschlüsseln. Wir rechnen also:
9^11 % 21 = 31381059609 % 21 = 18

Der Empfänger rechnet:
18^23 % 21 = 74347713614021927913318776832 % 21 = 9

Er erhält also genau die "Geheime Nachricht", die wir im zukommen lassen wollten.

Der Modulo ist ein Divisionsrest. Doch in dem Beispiel ist der Modulo das Produkt der Primzahlen p * q = n.

Frage 1:
Sehe ich das richtig, das Modulo hier tatsächlich Divisionsrest einer Division ist? Wenn ja, von welcher Division?

Frage 2:
Wenn ich eine kleinere Beispielaufgabe hernehme und sage:
10 % 6 = 4
!0/6=1 Rest 4. Da sich der Modulo NICHT um das tatsächliche Ergebis einer Disvision kümmert, sondern um den Divisionsrest ist das korrekte Ergebnis dieser Aufgabe 4 und nicht 1.

Allerdings sind in dem Beispiel sehr große Zahlen % 21 gerechnet. Aber wie, ich komme einfach nicht darauf wäre hier die Modulo-Rechnungs-Herleitung aussehen würde.

9^11 = 31381059609 %21 = 18 beispielsweise.

9^11 = 9*9*9*9*9*9*9*9*9*9*9

Werden evtl während diesen potenzierens bereits Modulo-Rechnungen durchgeführt?.

Wäre echt klasse, wenn Ihr mir den letzten Schliff noch nahebringt.

Gruß
Neutrino_2003

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
RSA - Kryptographie: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Mo 29.05.2006
Autor: mathiash

Hallo und guten Tag,

genau, zB ist

[mm] 9^{2k} \equiv 81^k\:\equiv\: 19\:\: [/mm] modulo [mm] \:\:21. [/mm]

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Krypto,Kodierungstheorie,Computeralgebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]