matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitR mit üblicher Topologie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - R mit üblicher Topologie
R mit üblicher Topologie < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

R mit üblicher Topologie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Sa 09.02.2013
Autor: theresetom

Aufgabe
[mm] \IR [/mm] mit der üblichen Topologie ist ein Hausdorffraum.

[mm] \IR [/mm] mit der üblichen Topologie..
Menge U [mm] \subset \IR [/mm] offen <=> [mm] \forall [/mm] x [mm] \in [/mm] U [mm] \exists \epsilon(x) [/mm] : (x- [mm] \epsilon, [/mm] x+ [mm] \epsilon) \subset [/mm] U


Ich weiß nicht recht wie ich zeigen kann dass es sich um einen hausdorffraum handelt.
[mm] \forall [/mm] x,y [mm] \in \IR, [/mm] x [mm] \not= [/mm] y [mm] \exists [/mm] U [mm] \in [/mm] U(x), [mm] \exists [/mm] V [mm] \in [/mm] U(y)
Wie soll ich die Umgebungen wählen?

        
Bezug
R mit üblicher Topologie: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 Sa 09.02.2013
Autor: steppenhahn

Hallo,


> [mm]\IR[/mm] mit der üblichen Topologie ist ein Hausdorffraum.
>  [mm]\IR[/mm] mit der üblichen Topologie..
>  Menge U [mm]\subset \IR[/mm] offen <=> [mm]\forall[/mm] x [mm]\in[/mm] U [mm]\exists \epsilon(x)[/mm]

> : (x- [mm]\epsilon,[/mm] x+ [mm]\epsilon) \subset[/mm] U


> Ich weiß nicht recht wie ich zeigen kann dass es sich um
> einen hausdorffraum handelt.
>  [mm]\forall[/mm] x,y [mm]\in \IR,[/mm] x [mm]\not=[/mm] y [mm]\exists[/mm] U [mm]\in[/mm] U(x), [mm]\exists[/mm]
> V [mm]\in[/mm] U(y)
>  Wie soll ich die Umgebungen wählen?

Na wähle einfach zwei offene Intervalle, die sich nicht überschneiden!

Wegen [mm] $x\not= [/mm] y$ ist $d := [mm] \frac{|x-y|}{4} [/mm] > 0$.
Die offenen Intervalle

$(x-d,x+d)$ und $(y-d,y+d)$

überschneiden sich nicht.


Viele Grüße,
Stefan



Bezug
                
Bezug
R mit üblicher Topologie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:58 So 10.02.2013
Autor: theresetom

Hallo
Stimmt meine Argumentation:
[mm] U_x [/mm] = (x-d,x+d)
[mm] U_y [/mm] = (y-d,y+d)

Sei z [mm] \in U_x \cap U_y [/mm] => |x-z|<d, |z-y| <d
4d = |x-y| [mm] \le [/mm] |x-z|  + |z-y| < 2d
was ein widerspruch ist.



Bezug
                        
Bezug
R mit üblicher Topologie: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 So 10.02.2013
Autor: steppenhahn

Hallo,


> Hallo
>  Stimmt meine Argumentation:
>  [mm]U_x[/mm] = (x-d,x+d)
>  [mm]U_y[/mm] = (y-d,y+d)
>  
> Sei z [mm]\in U_x \cap U_y[/mm] => |x-z|<d, |z-y|="" <d<br="">>  4d = |x-y| [mm]\le[/mm] |x-z|  + |z-y| < 2d

>  was ein widerspruch ist.

Genau!
Damit hast du nachgewiesen, dass [mm] $U_x \cap U_y [/mm] = [mm] \emptyset$. [/mm]

Viele Grüße,
Stefan

</d,>

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]